95 research outputs found

    Entanglement model of antibody viscosity

    Get PDF
    Antibody solutions are typically much more viscous than solutions of globular proteins at equivalent volume fraction. Here we propose that this is due to molecular entanglements that are caused by the elongated shape and intrinsic flexibility of antibody molecules. We present a simple theory in which the antibodies are modeled as linear polymers that can grow via reversible bonds between the antigen binding domains. This mechanism explains the observation that relatively subtle changes to the interparticle interaction can lead to large changes in the viscosity. The theory explains the presence of distinct power law regimes in the concentration dependence of the viscosity as well as the correlation between the viscosity and the charge on the variable domain in our anti-streptavidin IgG1 model system

    A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma.

    Get PDF
    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinnIL-33 is a tissue-derived cytokine that induces and amplifies eosinophilic inflammation and has emerged as a promising new drug target for asthma and allergic disease. Common variants at IL33 and IL1RL1, encoding the IL-33 receptor ST2, associate with eosinophil counts and asthma. Through whole-genome sequencing and imputation into the Icelandic population, we found a rare variant in IL33 (NM_001199640:exon7:c.487-1G>C (rs146597587-C), allele frequency = 0.65%) that disrupts a canonical splice acceptor site before the last coding exon. It is also found at low frequency in European populations. rs146597587-C associates with lower eosinophil counts (β = -0.21 SD, P = 2.5×10-16, N = 103,104), and reduced risk of asthma in Europeans (OR = 0.47; 95%CI: 0.32, 0.70, P = 1.8×10-4, N cases = 6,465, N controls = 302,977). Heterozygotes have about 40% lower total IL33 mRNA expression than non-carriers and allele-specific analysis based on RNA sequencing and phased genotypes shows that only 20% of the total expression is from the mutated chromosome. In half of those transcripts the mutation causes retention of the last intron, predicted to result in a premature stop codon that leads to truncation of 66 amino acids. The truncated IL-33 has normal intracellular localization but neither binds IL-33R/ST2 nor activates ST2-expressing cells. Together these data demonstrate that rs146597587-C is a loss of function mutation and support the hypothesis that IL-33 haploinsufficiency protects against asthma.Netherlands Asthma Foundation University Medical Center Groningen Ministry of Health and Environmental Hygiene of Netherlands Netherlands Asthma Stichting Astma Bestrijding BBMRI European Respiratory Society private and public research funds AstraZeneca ALK-Abello, Denmar

    The three-dimensional structure of Ca2+-bound calcyclin: implications for Ca2+-signal transduction by S100 proteins.

    Get PDF
    Background: Calcyclin is a member of the S100 subfamily of EF-hand Ca2+-binding proteins. This protein has implied roles in the regulation of cell growth and division, exhibits deregulated expression in association with cell transformation, and is found in high abundance in certain breast cancer cell lines. The novel homodimeric structural motif first identified for apo calcyclin raised the possibility that S100 proteins recognize their targets in a manner that is distinctly different from that of the prototypical EF-hand Ca2+ sensor, calmodulin. The NMR solution structure of Ca2+-bound calcyclin has been determined in order to identify Ca2+-induced structural changes and to obtain insights into the mechanism of Ca2+-triggered-target protein recognition. Results: The three-dimensional structure of Ca2+-bound calcyclin was calculated with 1372 experimental constraints, and is represented by an ensemble of 20 structures that have a backbone root mean square deviation of 1.9 Angstrom for the eight helices. Ca2+-bound calcyclin has the same symmetric homodimeric fold as observed for the apo protein. The helical packing within the globular domains and the subunit interface also change little upon Ca2+ binding, A distinct homology was found between the Ca2+-bound states of the calcyclin subunit and the monomeric S100 protein calbindin D-9k. Conclusions: Only very modest Ca2+-induced changes are observed in the structure of calcyclin, in sharp contrast to the domain-opening that occurs in calmodulin and related Ca2+-sensor proteins. Thus, calcyclin, and by inference other members of the S100 family, must have a different mode for transducing Ca2+ signals and recognizing target proteins. This proposal raises significant questions concerning the purported roles of S100 proteins as Ca2+ sensors
    corecore