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Abstract

Antibody solutions are typically much more viscous than solutions of globular proteins at

equivalent volume fraction. Here we propose that this is due to molecular entanglements that

are caused by the elongated shape and intrinsic flexibility of antibody molecules. We present

a simple theory in which the antibodies are modeled as linear polymers that can grow via re-

versible bonds between the antigen binding domains. This mechanism explains the observation

that relatively subtle changes to the interparticle interaction can lead to large changes in the

viscosity. The theory explains the presence of distinct power law regimes in the concentration

dependence of the viscosity as well as the correlation between the viscosity and the charge on

the variable domain in our anti-streptavidin IgG1 model system.

keywords: formulation, theory, polymer, reptation, biotechnology

Introduction

Patient convenience is becoming an increasingly important aspect for formulation and delivery

of biotherapeutics. While earlier biotherapeutics were dosed at microgram to milligram levels

with frequent dosing schedules, antibody based drugs are generally dosed in the tens to hundreds

of milligrams range. This is especially relevant as the frequency of dosing decreases, leading to

the need for protein concentrations >100 mg/mL that are compatible with autodelivery devices

for patient self-injection. As antibody solutions become more concentrated, the viscosity of the

solutions can increase dramatically leading to difficulty with manufacturing and delivery. This

problem is especially true for monoclonal antibodies (mAbs) used for treating a wide array of

diseases related to inflammation.1,2

Initially, therapeutic mAbs were developed with the binding affinities to targets as the exclu-

sive consideration and little thought of formulation and syringeability with the idea that viscosity

at high concentration could be reduced using pH and various excipients.2–13 More recently, the

viscosity problem is addressed using high-throughput screening of formulation conditions.6,14 A
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better approach would be to tune the viscosity early in the development pipeline when the sequence

can be used as a variable. Recent attempts at identifying sequence and specific residues responsible

for inducing the viscosity at high protein concentrations have had limited success.15 Yadav et al.

swapped sequences from the complementarity determining regions (CDR) in two otherwise iden-

tical antibodies, one with high and the other low viscosity, successfully lowering the viscosity of

one mAb but not increasing the viscosity of the other. This suggests that bioinformatic approaches

would have limited predictive power in identifying high-viscosity CDR loops and motivates the

development of physics-based models.

In order to utilize the sequence as a variable to tune the viscosity, it will be necessary to un-

derstand precisely how mAb properties give rise to elevated viscosity. This understanding is a

prerequisite for the detailed in silico models needed to predict the viscosity based on sequence

and solvent conditions. Previous attempts to model antibody viscosity have employed empirical

quasi-spherical representations.16–18 A common feature of these models is the presence of fitting

parameters that greatly enhance the viscosity beyond that expected for a comparable solution of

ideal spheres or ellipsoids.19 Due to the empirical nature of these formulas, they provide little in-

sight into the microscopic events that give rise to the viscosity and are not suitable for predicting

the effects of sequence or solvent changes. Several studies have implicated reversible protein-

protein interactions as the cause of elevated viscosity.9,11,12,20 Yet, it is unclear how these protein

assemblies might affect the viscosity if the protein volume fraction remains unchanged.18

In this paper we make the opposite approximation of the rigid particle models and treat the

antibodies as highly flexible molecules. The goal of this model is to determine if the elongated

shape and intrinsic flexibility of antibodies are playing an important role in the viscosity. This

approach is motivated by the observation that globular proteins lacking the large-scale flexibility

of antibodies have much lower viscosities than antibodies at comparable volume fractions.21–24

Somewhat surprisingly, we find that antibody viscosities are consistent with reptation dynamics as

would be expected in a semi-dilute solution of polymers. In such systems, topological constraints

imposed by neighboring molecules restrict the lateral motion of molecules forcing them to relax
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via diffusion parallel to the polymer backbone.25 We expect that in concentrated antibody solu-

tions the diffusion occurs primarily along the most extended molecular dimension, which would

be along a contour connecting the two variable regions. This restricted mobility is exacerbated

by protein-protein binding events which cause the antibodies to form more extended structures,

thereby enhancing the potential for entanglements.

Model

Scaling theory gives the concentration dependence of viscosity. In order to model the effect of

molecular flexibility on viscosity, we approximate each antibody as a featureless polymer with the

polymer ends located at the antigen binding sites. At the concentration range of interest, above

100 mg/ml, the center-to-center particle separation is comparable to the molecular size and the

antibodies occupy a solution volume on the order of 10%. Therefore, we adopt a viscosity model

for a semi-dilute polymer solution.26 The viscosity is proportional to the product of the elastic

modulus G and the longest relaxation time τ ,27 which takes the following form in the semi-dilute

regime28–30

η ∝ Gτ (1)

∼ ηs

( c
c∗

)3/(3ν−1)
(2)

where ηs is the viscosity of the solvent, ν ' 3/5 is the Flory exponent, c is the segment concen-

tration, and c∗ is the overlap concentration. Each antibody can be interpreted as a “polymer” of

length L = 3 segments corresponding to the three domains of the antibody molecule. Eq. (2) is ex-

pected to be valid when the length of the polymer greatly exceeds the monomer dimensions. After

accounting for the self-association of the antibodies, our solution amount to a mixture of polymers

of length 3 ≤ L . 10, which is still too short to satisfy the separation of length scales required

for scaling theories like Eq. (2). Nevertheless, in the spirit of the “spherical cow” approximation
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we adopt this over-simplified model in the hope of gaining insights from an analytically tractable

theory.

The overlap concentration for a solution of polymers is the point at which the random coil

volumes, ∼ L3ν , occupy the full solution volume. A rough estimate of the antibody overlap con-

centration can be obtained from the monomer dimension, ∼ 15 nm, yielding c∗ ∼ 70 mg/ml. The

apparent coincidence of this value with the nonlinear increase in viscosity does not provide evi-

dence for the polymer model as this is simply the concentration at which many-body interactions

would be expected to dominate the viscosity, regardless of the mechanism. The overlap concen-

tration declines with polymer length as the coil volumes expand to include more solvent. For

polymers consisting of L segments of size b, the overlap concentration is c∗ ∼ L1−3νb−3.30 Insert-

ing this into Eq. (2) we have

η ∼ c3/(3ν−1)L3. (3)

From Eq. (3) we see that this viscosity should increase with concentration according to c3.75 for

ν ' 0.6. Also from Eq. (3) it is apparent that the viscosity depends strongly on the polymer length

L. The formation of reversible antibody-antibody complexes will lead to longer effective polymer

lengths, thereby increasing the viscosity. This is an important feature of our model and contrasts

strongly with quasi-spherical models. In quasi-spherical models the viscosity is a function of the

solute volume fraction which changes minimally upon protein-protein association. To compute L

we adopt a 1D equilibrium polymerization model (see Figure 1). This calculation amounts to a

discretized version of Cates’ theory for the viscosity of ‘living polymers’.31,32

Intermolecular binding leads to longer effective lengths and more entanglements. We

assume that antibody-antibody binding events occur primarily between antigen binding domains

resulting in the linear aggregates shown in Figure 1. This ‘head-to-head’ model is not an essential

feature of our theory. In fact, for the small complex sizes we find after fitting to experimental data,

a model describing head-to-tail binding would yield similar results. We expect that the binding

sites, and hence the aggregate topology, will depend on the specific antibody under consideration.

This will be discussed in more detail below.
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Figure 1: Cartoon of the linear aggregation model. Transient binding interactions between the
variable domains causes the antibodies to link together into flexible chains. The entanglement
of these chains results in a large viscosity. The figure shows monomeric proteins (blue), dimers
(orange), and a trimer (red).

To calculate aggregate sizes in the antibody solution we construct the grand canonical partition

function

Q =
1
k

∞

∑
n=1

(c1k)n =
c1

1− c1k
. (4)

Here we have defined the monomer state to have zero free energy so that the chemical potential

is given by µ = kBT lnc1, where c1 is the monomer concentration. The equilibrium constant for

the formation of a n-mer is therefore kn−1 where −kBT lnk is the free energy of an intermolecular

bond (strictly speaking, k is the partition function over all potential intermolecular binding states).

Eq. (4) is valid when the system is near equilibrium. This is exact for the dynamic light scattering

(DLS) measurements of the viscosity that we employ here, however, methods that apply nonzero

shear will drive the system out of equilibrium and it may be necessary to utilize a kinetic model

for protein association.

The total protein concentration is given by

c =
1
k

∞

∑
n=1

n(c1k)n = c1
∂Q
∂c1

=
c1

(1− c1k)2 . (5)

This expression can be inverted to find the monomer concentration as a function of the total protein
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concentration

c1 =
(2k+1/c)±

√
(2k+1/c)2−4k2

2k2 (6)

=
1

2k2c
(1+2kc−

√
4kc+1), (7)

where the lower sign has been selected to give the limit c1→ c at low concentrations.

To solve for the effective molecular size appearing in the expression for the viscosity, we find

the average assembly size from Eq. (4), Eq. (5), and Eq. (7),

〈N〉=
1
k ∑

∞
n=1 n(c1k)n

Q
=

c
Q

(8)

=
2kc√

1+4kc−1
. (9)

To obtain an expression for the viscosity we insert Eq. (9) into Eq. (3). The result is

η = Ac3/(3ν−1)
(

2kc√
1+4kc−1

)3

, (10)

where A is a constant of proportionality that will be obtained by fitting. Note that we have absorbed

into A a constant factor arising from the conversion from aggregation number to polymer length

3〈N〉= L.

Methods

Preparation of mAb solutions Purified anti-streptavidin IgG1 monoclonal antibody solutions

were dialyzed (1:1,000,000 volume ratio) against buffer solutions containing 20 mM Sodium Ac-

etate (pH 5.0), 25 mM Sodium Acetate (pH 5.5), 10 mM Histidine (pH 6.0 and pH 6.5) and 20

mM Histidine (pH 6.0) at 25◦C using dialysis cassettes with a 10,000 MWCO (Thermo Scientific,

Rockford, IL). Each sample was concentrated by centrifugation using 10,000 MWCO Amicon

Ultra-15 centrifugal concentration devices (Millipore Corporation, Billerica, MA) until a target
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protein concentration of 240 mg/mL was achieved. Concentrated mAb solutions were diluted by

direct mixing with corresponding buffer (20 mM Sodium Acetate (pH 5.0), 25 mM Sodium Ac-

etate (pH 5.5), 10 mM Histidine (pH 6.0 or 6.5) or 20 mM Histidine (pH 6.0)) to achieve desired

protein concentrations with NaOH added when necessary to achieve the desired pH.

Viscosity Measurement The viscosity of sample solutions was measured using DLS accord-

ing to a previously developed method.8,33,34 Briefly, 59.4 µL of each sample was spiked with 0.6

µL of 200 nm (nominal diameter) polystyrene beads (Thermo Fisher Scientific Inc., Waltham,

MA). The diffusion of the beads was then measured by DynaProTM PlatereaderTM DLS system

(Wyatt Technology, Santa Barbara, CA) using a 384-well microplate with all samples run in du-

plicate. The scattering signal collection was done through 10 consecutive acquisitions with each

acquisition lasting 30 seconds. Prior to the measurements, samples were incubated at the specified

temperatures for at least 30 minutes. In order to obtain the apparent size of the polystyrene beads,

water viscosity was assumed to allow diffusion coefficient calculation based on DLS data. The

solution microviscosity was then derived using the apparent radius of the beads, the theoretical

nominal radius of the beads and the theoretical water viscosity at the specified temperature (for

example, 1.0 cP at 20◦C).

Fitting procedure To compare Eq. (10) to experimental data, we require two missing con-

stants. The first is an overall proportionality factor A that is not expected to vary with solution

conditions or antibody sequence. The second parameter, k, captures the binding affinity and is

expected to vary strongly between molecules and with solvent conditions. To account for the

temperature dependence of the binding affinity we adopt the following form for k(T )

k = M−1
w e−(h−T s)/kBT (11)

where the units are (ml/mg) and h and s are fitting parameters that can be interpreted as the en-

thalpy and entropy for antibody-antibody association. The molecular weight factor Mw ' 142 kDa

facilitates this interpretation by setting the reference concentration in s to the standard value of 1M.
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The parameters A, h, and s were obtained using a two step process. We first obtained A as

follows. For a fixed value of A we fit k to each of the 96 viscosity vs. concentration curves in

Figure 2 and computed the sum of square errors. This process was repeated varying A to obtain the

optimal value A = 5.4×10−8cP(mg/ml)−3.75. Next, for each set of pH and salt conditions (each

panel in Figure 2), Eq. (11) was fitted to the optimal k values for each of the six temperatures. This

reduced the six unique k values to two parameters (h and s). In total, there are 16×2+1 = 33 free

parameters that are used to fit the 96 curves in Figure 2.

Results and Discussion
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Small complex sizes are sufficient to explain the increase in viscosity. The fits to Eq. (10)
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are shown in Figure 2. The fitted binding energies are relatively modest, ranging from about

−2.5kBT to −7kBT over the parameter space (Figure 3). At the highest concentration of 170

mg/ml, these binding energies correspond to average aggregate sizes of 〈N〉 ' 1 under the least

viscous conditions to 〈N〉 ' 1.8 under the most viscous conditions (L = 3–5.4 domains). We note

that the model’s overestimation of the viscosity under the least viscous conditions (e.g. pH 5.0

with 0mM NaCl) is suggestive that the obtained binding energies are insufficiently attractive and

the overall prefactor A should be correspondingly smaller. In fact, re-fitting the data using a value

of A that has been reduced by half fixes these errors in the low viscosity conditions and yields

binding energies that are greater by 2 to 3 kJ/mol. While this fit has a visual quality similar to

that in Figure 2, the sum of square errors is much higher due to the large weight given to the

high viscosity data points in the numerical fitting procedure. This compensation between the fitted

values of A and the binding free energies means that there is considerable uncertainty in the free

energies. Therefore, our primary message is that the viscosity is qualitatively consistent with

molecular entanglements and that the antibody complexes that cause this are most likely small

(2-4 molecules).

It is not known whether the fitted binding energies correspond to a single dominant bound state

or a heterogeneous ensemble of states. Without this information it is difficult to interpret the effects

of salt and pH. However, the observed binding energies are consistent with the simple model shown

in Figure 1 where the interactions occur primarily between the variable antigen binding domains

(Fv). The calculated charge on the Fv is plotted in Figure 3b. The reduction in net charge from

approximately +5 to +3 as the pH increases from 5.0 to 6.5 parallels the tendency for more favor-

able binding energies over the same range. This observation that the viscosity depends on the local

charge density of the aggregation-prone regions explains the inconsistent correlation between elec-

troviscous effects and measured antibody viscosity.17,35,36 In Figure 3a there are several deviations

from the expected monotonic relationship between the viscosity and the pH or salt concentration,

most notably at pH 6.0. These are most likely due to small patches of charge complementarity that

appear with the changing ionization states. Another possibility is that the non-monotonicity is an
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artifact of multiple competing bound states that have differing responses to the pH. In any case,

these effects are minor compared to the overall trend observed in Figure 3.
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Figure 3: (left) Effect of pH and salt concentration on the free energy of antibody-antibody asso-
ciation. The free energy (plotted in units of kBT ) becomes more attractive as the pH is increased,
which corresponds to a reduction in the net charge on the variable region. (right) Net charge on the
variable region calculated using the pKa set of Grimsley et al.37

The viscosity shows three power law regimes. Eq. (10) predicts two different power laws

for the effect of antibody concentration on viscosity. At low concentrations ck� 1 the factor in

the parentheses is independent of concentration and the viscosity scales like η ∼ c3/(3ν−1) ∼ c3.75.

However, at higher concentrations the effective molecule size, Eq. (9), grows as c1/2 suggesting

that the viscosity should scale as c5.25. Although it is not predicted by the model, a third concentra-

tion regime with a linear dependence will also be present in the dilute regime when the molecules

are non-interacting.

The anti-streptavidin system does, in fact, show three power law regimes, although the ex-

ponents differ somewhat from the theoretical prediction (Figure 4). In the low concentration

regime this deviation simply indicates that the experiments did not adequately sample concen-

trations within the linear regime. More interestingly, the exponents ∼ 2.7 and ∼ 4.7 observed at

intermediate and high concentrations, respectively, are lower than the predicted values. This is not

surprising since even ideal polymer systems show deviations from the predicted exponent of 3.75,

although in these cases the exponent usually falls between 3 and 4.38 Another explanation for this

discrepancy is that our antibody ‘polymers’ are too short to satisfy the scaling limit required in
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the derivation of Eq. (2). Our observed exponents are consistent with a slightly larger value of the

Flory exponent ν ' 0.7, which is reasonable since antibodies are too flexible to have a radius of

gyration that scales like a rigid rod, Rg ∝ L1, yet not flexible enough to exhibit true Flory scaling,

Rg ∝ L0.6. While this is suggestive that the fits in Figure 2 could be improved with a larger value

of ν , this is complicated by the fact that the optimal value of ν will vary with conditions. This is

because the limit ν → 0.6 must be obtained when the antibody complexes grow very large.

Anti-streptavidin viscosity is not sensitive to the model binding site location. A potential

pitfall for our model is the assumption of linear aggregation via head-to-head binding. In practice,

antibodies vary widely and it is expected that different molecules will differ in their preferred

intermolecular binding sites. This can have profound effects on the viscosity of the solution since

binding interactions between the constant and antigen binding domains will lead to the formation

of branched assemblies. In our anti-streptavidin model system branching is unlikely to play a

role because the complex sizes are sufficiently small that the assumption of a linear assembly is

always reasonable. In polymer systems branches exponentially increase the relaxation time due to

the low probability of retracting the arms.27 In the case of a branched antibody assembly, which

would be expected in systems where interactions between the constant and variable domains are

the dominant mode of association, the arm retraction mechanism is unlikely to occur due to the

limited flexibility of the antibodies. Therefore, the relaxation time would be determined by the

timescale for the formation and breakage of the antibody-antibody contacts. We have neglected

this timescale in the present treatment, but it could provide a significant reduction to the relaxation

time, particularly in sheared systems. This effect will be explored in future work.

Summary

We have presented a simple theory for the viscosity of antibody solutions in which the antibodies

are modeled as linear polymers. This model shows that the solution viscosity is consistent with

molecular entanglements that are exacerbated when the molecules bind together to form larger
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complexes. We hope that simple models like this one will motivate more detailed atomistic models

for predicting antibody viscosity.
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