132 research outputs found

    A new start!

    Get PDF

    Editors' foreword

    Get PDF

    Inversion-based control of electromechanical systems using causal graphical descriptions

    Get PDF
    Causal Ordering Graph and Energetic Macroscopic Representation are graphical descriptions to model electromechanical systems using integral causality. Inversion rules have been defined in order to deduce control structure step-bystep from these graphical descriptions. These two modeling tools can be used together to develop a two-layer control of system with complex parts. A double-drive paper system is taken as an example. The deduced control yields good performances of tension regulation and velocity tracking

    Inversion-based control of electromechanical systems using causal graphical descriptions

    Get PDF
    Causal Ordering Graph and Energetic Macroscopic Representation are graphical descriptions to model electromechanical systems using integral causality. Inversion rules have been defined in order to deduce control structure step-bystep from these graphical descriptions. These two modeling tools can be used together to develop a two-layer control of system with complex parts. A double-drive paper system is taken as an example. The deduced control yields good performances of tension regulation and velocity tracking

    Teaching drive control using Energetic Macroscopic Representation - expert level

    Get PDF
    International audienceThe Energetic Macroscopic Representation (EMR) has been developed in 2000 to develop control of electric drives. Since 2002 this graphical tool has been introduced to teach drive control in France, then Canada, Switzerland and China. The University of Lille proposes two drive control units using EMR for students in electrical engineering: initiation level and expert level. A first paper has described the initiation level with the simulation of an electric vehicle. This second paper deals with the content of the expert level unit and describes the simulation project of a wind energy conversion system using a MPPT (Maximal Power Point Tracking) strategy

    Teaching drive control using Energetic Macroscopic Representation - expert level

    No full text
    International audienceThe Energetic Macroscopic Representation (EMR) has been developed in 2000 to develop control of electric drives. Since 2002 this graphical tool has been introduced to teach drive control in France, then Canada, Switzerland and China. The University of Lille proposes two drive control units using EMR for students in electrical engineering: initiation level and expert level. A first paper has described the initiation level with the simulation of an electric vehicle. This second paper deals with the content of the expert level unit and describes the simulation project of a wind energy conversion system using a MPPT (Maximal Power Point Tracking) strategy

    Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute

    Get PDF
    The prevalence of myopia is increasing extensively worldwide. The number of people with myopia in 2020 is predicted to be 2.6 billion globally, which is expected to rise up to 4.9 billion by 2050, unless preventive actions and interventions are taken. The number of individuals with high myopia is also increasing substantially and pathological myopia is predicted to become the most common cause of irreversible vision impairment and blindness worldwide and also in Europe. These prevalence estimates indicate the importance of reducing the burden of myopia by means of myopia control interventions to prevent myopia onset and to slow down myopia progression. Due to the urgency of the situation, the European Society of Ophthalmology decided to publish this update of the current information and guidance on management of myopia. The pathogenesis and genetics of myopia are also summarized and epidemiology, risk factors, preventive and treatment options are discussed in details
    • …
    corecore