108 research outputs found
Supplier evaluation and selection in fuzzy environments: a review of MADM approaches
In past years, the multi-attribute decision-making (MADM)
approaches have been extensively applied by researchers to the
supplier evaluation and selection problem. Many of these studies
were performed in an uncertain environment described by fuzzy sets.
This study provides a review of applications of MADM approaches
for evaluation and selection of suppliers in a fuzzy environment. To
this aim, a total of 339 publications were examined, including papers
in peer-reviewed journals and reputable conferences and also some
book chapters over the period of 2001 to 2016. These publications
were extracted from many online databases and classified in some
categories and subcategories according to the MADM approaches,
and then they were analysed based on the frequency of approaches,
number of citations, year of publication, country of origin and
publishing journals. The results of this study show that the AHP and
TOPSIS methods are the most popular approaches. Moreover, China
and Taiwan are the top countries in terms of number of publications
and number of citations, respectively. The top three journals with
highest number of publications were: Expert Systems with Applications,
International Journal of Production Research and The International
Journal of Advanced Manufacturing Technology
Intuitionistic fuzzy edas method: an application to solid waste disposal site selection
Evaluation based on Distance from Average Solution (EDAS) is a new multicriteria decision making (MCDM) method, which is based on the distances of alternatives from the average scores of attributes. Classical EDAS has been already extended by using ordinary fuzzy sets in case of vague and incomplete data. In this paper, we propose an interval-valued intuitionistic fuzzy EDAS method, which is based on the data belonging to membership, nonmembership, and hesitance degrees. A sensitivity analysis is also given to show how robust decisions are obtained through the proposed intuitionistic fuzzy EDAS. The proposed intuitionistic fuzzy EDAS method is applied to the evaluation of solid waste disposal site selection alternatives. The comparative and sensitivity analyses are also included
Hierarchical Decision-making using a New Mathematical Model based on the Best-worst Method
Decision-making processes in different organizations often have a hierarchical and multilevel structure with various criteria and sub-criteria. The application of hierarchical decision-making has been increased in recent years in many different areas. Researchers have used different hierarchical decision-making methods through mathematical modeling. The best-worst method (BWM) is a multi-criteria evaluation methodology based on pairwise comparisons. In this paper, we introduce a new hierarchical BWM (HBWM) which consists of seven steps. In this new approach, the weights of the criteria and sub-criteria are obtained by using a novel integrated mathematical model. To analyze the proposed model, two numerical examples are provided. To show the performance of the introduced approach, a comparison is also made between the results of the HBWM and BWM methodologies. The analysis demonstrates that HBWM can effectively determine the weights of criteria and sub-criteria through an integrated model
Extended EDAS Method for Fuzzy Multi-criteria Decision-making: An Application to Supplier Selection
In the real-world problems, we are likely confronted with some alternatives that eed to be evaluated with respect to multiple conflicting criteria. Multi-criteria ecision-making (MCDM) refers to making decisions in such a situation. There are any methods and techniques available for solving MCDM problems. The evaluation ased on distance from average solution (EDAS) method is an efficient multi-criteria ecision-making method. Because the uncertainty is usually an inevitable part of he MCDM problems, fuzzy MCDM methods can be very useful for dealing with the eal-world decision-making problems. In this study, we extend the EDAS method o handle the MCDM problems in the fuzzy environment. A case study of supplier election is used to show the procedure of the proposed method and applicability of t. Also, we perform a sensitivity analysis by using simulated weights for criteria to xamine the stability and validity of the results of the proposed method. The results f this study show that the extended fuzzy EDAS method is efficient and has good tability for solving MCDM problems
MCDM approaches for evaluating urban and public transportation systems: a short review of recent studies
Studies related to transportation planning and development have been in the center of activities of many researchers in the past decades. Road congestions issues, economic problems, health problems and environmental problems are some examples of complex problems that can be caused by urban and public transportation in big cities. Evaluating urban and public transportation systems could help to reach effective solutions to overcome these issues. This article presents a short bibliographic review of some recent studies on Multi-Criteria Decision-Making (MCDM) approaches for evaluating urban and public transportation systems. To this aim, Scopus was chosen as the database for making a search on journal articles. Scopus is trusted by major institutions in the world, and all journals covered in this database are inspected for sufficiently high quality each year. The search was made on the journal articles from 2017 to 2022 (July). The analyses presented in this study show that the Analytic Hierarchy Process (AHP) method is the most used method, which has been applied to different studies in the field of urban and public transportation systems based on MCDM approaches. According to the analysis of the number of articles, Turkey is ranked 1st among different countries, and “Budapest University of Technology and Economics” (Hungary) is 1st in the ranking of institutions. Moreover, most of the articles have been published within the “social sciences” subject area. The recent trend in different studies on urban and public transportation systems shows the importance of using MCDM approaches in this field. Moreover, noticeable employment of fuzzy sets in several studies is a point that can shows the significant role of uncertainty in dealing with this type of problems
Fuzzy extension of the CODAS method for multi-criteria market segment evaluation
One of the important activities of a company that can increase its competitiveness is market segment evaluation and selection (mse/mss). We can usually consider mse/mss as a multi-criteria decision-making (mcdm) problem, and so we need to use an mcdm method to handle it. Uncertainty is one of the important factors that can affect the process of decision-making. Fuzzy mcdm approached have been designed to deal with the uncertainty of decision-making problems. In this study, a fuzzy extension of the codas (combinative distance-based assessment) method is proposed to solve multi-criteria group decision-making problems. We use linguistic variables and trapezoidal fuzzy numbers to extend the codas method. The proposed fuzzy codas method is applied to an example of market segment evaluation and selection problem under uncertainty. To validate the results, a comparison is performed between the fuzzy codas and two other mcdm methods (fuzzy edas and fuzzy topsis). A sensitivity analysis is also carried out to demonstrate the stability of the results of the fuzz codas. For this aim, ten sets of criteria weights are randomly generated and the example is solved using each set separately. The results of the comparison and the sensitivity analysis show that the proposed fuzzy codas method gives valid and stable results
An integrated type-2 fuzzy decision model based on WASPAS and SECA for evaluation of sustainable manufacturing strategies
One of the most essential topics for the present and future generations is sustainability. Today, because of threats made by traditional and old manufacturing practices, sustainability has become an essential topic in manufacturing companies. Attaining a sustainable manufacturing process requires making decisions about the strategies of manufacturing. In this paper, a novel integrated model is developed to evaluate sustainable manufacturing strategies. The proposed model is based upon two multi-criteria decision-making (MCDM) methods: WASPAS (Weighted Aggregated Sum Product ASsessment) and SECA (Simultaneous Evaluation of Criteria and Alternatives). Due to the uncertainty of evaluation process, we use interval type-2 fuzzy sets (IT2FSs). An example of evaluating sustainable manufacturing strategies is presented, and a sensitivity analysis is carried out for illustration of the developed approach and validation of it. The findings show the efficiency of the developed model, and based on the considered example, “Eco-efficiency” can be regarded as an effective strategy
Improved Decision Model for Evaluating Risks in Construction Projects
The paper develops an innovative risk evaluation methodology to address the challenges of multicriteria decision-making problem of project evaluation and selection. The methodology considers the fuzzy analytic network process (FANP) to incorporate the interdependencies of different risk factors, and failure mode and effect analysis (FMEA) to conduct the rating analysis of projects to develop the decision matrix. Finally, evaluation based on the distance from the average solution compares alternative projects and reports the optimal solution. The proposed approach allows project managers to engage in the evaluation process and to use fuzzy linguistic values in the assessment process. A case study from the construction sector is selected to verify the efficacy of the proposed approach over other popular approaches in the literature
A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study
[EN] Performance evaluation is relevant for supporting managerial decisions related to the improvement of public emergency departments (EDs). As different criteria from ED context and several alternatives need to be considered, selecting a suitable Multicriteria Decision-Making (MCDM) approach has become a crucial step for ED performance evaluation. Although some methodologies have been proposed to address this challenge, a more complete approach is still lacking. This paper bridges this gap by integrating three potent MCDM methods. First, the Fuzzy Analytic Hierarchy Process (FAHP) is used to determine the criteria and sub-criteria weights under uncertainty, followed by the
interdependence evaluation via fuzzy Decision-Making Trial and Evaluation Laboratory(FDEMATEL). The fuzzy logic is merged with AHP and DEMATEL to illustrate vague judgments. Finally, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used for
ranking EDs. This approach is validated in a real 3-ED cluster. The results revealed the critical role of Infrastructure (21.5%) in ED performance and the interactive nature of Patient safety (C+R =12.771).
Furthermore, this paper evidences the weaknesses to be tackled for upgrading the performance of each ED.Ortiz-Barrios, M.; Alfaro Saiz, JJ. (2020). A Hybrid Fuzzy Multi-criteria Decision Making Model to Evaluate the Overall Performance of Public Emergency Departments: A Case Study. International Journal of Information Technology & Decision Making. 19(6):1485-1548. https://doi.org/10.1142/S0219622020500364S14851548196Lord, K., Parwani, V., Ulrich, A., Finn, E. B., Rothenberg, C., Emerson, B., … Venkatesh, A. K. (2018). Emergency department boarding and adverse hospitalization outcomes among patients admitted to a general medical service. The American Journal of Emergency Medicine, 36(7), 1246-1248. doi:10.1016/j.ajem.2018.03.043Sørup, C. M., Jacobsen, P., & Forberg, J. L. (2013). Evaluation of emergency department performance – a systematic review on recommended performance and quality-in-care measures. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 21(1). doi:10.1186/1757-7241-21-62Farokhi, S., & Roghanian, E. (2018). Determining quantitative targets for performance measures in the balanced scorecard method using response surface methodology. Management Decision, 56(9), 2006-2037. doi:10.1108/md-08-2017-0772Ortiz Barrios, M. A., & Felizzola Jiménez, H. (2016). Use of Six Sigma Methodology to Reduce Appointment Lead-Time in Obstetrics Outpatient Department. Journal of Medical Systems, 40(10). doi:10.1007/s10916-016-0577-3Sunder M., V., Ganesh, L. S., & Marathe, R. R. (2018). A morphological analysis of research literature on Lean Six Sigma for services. International Journal of Operations & Production Management, 38(1), 149-182. doi:10.1108/ijopm-05-2016-0273Bergeron, B. P. (2017). Performance Management in Healthcare. doi:10.4324/9781315102214Santos, S. P., Belton, V., Howick, S., & Pilkington, M. (2018). Measuring organisational performance using a mix of OR methods. Technological Forecasting and Social Change, 131, 18-30. doi:10.1016/j.techfore.2017.07.028Ho, W., & Ma, X. (2018). The state-of-the-art integrations and applications of the analytic hierarchy process. European Journal of Operational Research, 267(2), 399-414. doi:10.1016/j.ejor.2017.09.007Dargi, A., Anjomshoae, A., Galankashi, M. R., Memari, A., & Tap, M. B. M. (2014). Supplier Selection: A Fuzzy-ANP Approach. Procedia Computer Science, 31, 691-700. doi:10.1016/j.procs.2014.05.317Jing, M., Jie, Y., Shou-yi, L., & Lu, W. (2015). Application of fuzzy analytic hierarchy process in the risk assessment of dangerous small-sized reservoirs. International Journal of Machine Learning and Cybernetics, 9(1), 113-123. doi:10.1007/s13042-015-0363-4Samanlioglu, F., Taskaya, Y. E., Gulen, U. C., & Cokcan, O. (2018). A Fuzzy AHP–TOPSIS-Based Group Decision-Making Approach to IT Personnel Selection. International Journal of Fuzzy Systems, 20(5), 1576-1591. doi:10.1007/s40815-018-0474-7CHEN, M.-F., TZENG, G.-H., & TANG, T.-I. (2005). FUZZY MCDM APPROACH FOR EVALUATION OF EXPATRIATE ASSIGNMENTS. International Journal of Information Technology & Decision Making, 04(02), 277-296. doi:10.1142/s0219622005001520Gul, M., Celik, E., Gumus, A. T., & Guneri, A. F. (2016). Emergency department performance evaluation by an integrated simulation and interval type-2 fuzzy MCDM-based scenario analysis. European J. of Industrial Engineering, 10(2), 196. doi:10.1504/ejie.2016.075846Jovčić, Průša, Dobrodolac, & Švadlenka. (2019). A Proposal for a Decision-Making Tool in Third-Party Logistics (3PL) Provider Selection Based on Multi-Criteria Analysis and the Fuzzy Approach. Sustainability, 11(15), 4236. doi:10.3390/su11154236Saaty, T. L., & Vargas, L. G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. International Series in Operations Research & Management Science. doi:10.1007/978-1-4614-3597-6Vargas, L. G. (2016). Voting with Intensity of Preferences. International Journal of Information Technology & Decision Making, 15(04), 839-859. doi:10.1142/s0219622016400058Lee, K.-C., Tsai, W.-H., Yang, C.-H., & Lin, Y.-Z. (2018). An MCDM approach for selecting green aviation fleet program management strategies under multi-resource limitations. Journal of Air Transport Management, 68, 76-85. doi:10.1016/j.jairtraman.2017.06.011Labib, A., & Read, M. (2015). A hybrid model for learning from failures: The Hurricane Katrina disaster. Expert Systems with Applications, 42(21), 7869-7881. doi:10.1016/j.eswa.2015.06.020Hosseini, S., & Khaled, A. A. (2016). A hybrid ensemble and AHP approach for resilient supplier selection. Journal of Intelligent Manufacturing, 30(1), 207-228. doi:10.1007/s10845-016-1241-yZavadskas, E. K., Govindan, K., Antucheviciene, J., & Turskis, Z. (2016). Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Economic Research-Ekonomska Istraživanja, 29(1), 857-887. doi:10.1080/1331677x.2016.1237302Lolli, F., Balugani, E., Ishizaka, A., Gamberini, R., Butturi, M. A., Marinello, S., & Rimini, B. (2019). On the elicitation of criteria weights in PROMETHEE-based ranking methods for a mobile application. Expert Systems with Applications, 120, 217-227. doi:10.1016/j.eswa.2018.11.030De Almeida Filho, A. T., Clemente, T. R. N., Morais, D. C., & de Almeida, A. T. (2018). Preference modeling experiments with surrogate weighting procedures for the PROMETHEE method. European Journal of Operational Research, 264(2), 453-461. doi:10.1016/j.ejor.2017.08.006Sun, G., Guan, X., Yi, X., & Zhou, Z. (2018). An innovative TOPSIS approach based on hesitant fuzzy correlation coefficient and its applications. Applied Soft Computing, 68, 249-267. doi:10.1016/j.asoc.2018.04.004Frazão, T. D. C., Camilo, D. G. G., Cabral, E. L. S., & Souza, R. P. (2018). Multicriteria decision analysis (MCDA) in health care: a systematic review of the main characteristics and methodological steps. BMC Medical Informatics and Decision Making, 18(1). doi:10.1186/s12911-018-0663-1Ortiz-Barrios, M. A., Herrera-Fontalvo, Z., Rúa-Muñoz, J., Ojeda-Gutiérrez, S., De Felice, F., & Petrillo, A. (2018). An integrated approach to evaluate the risk of adverse events in hospital sector. Management Decision, 56(10), 2187-2224. doi:10.1108/md-09-2017-0917Al Salem, A. A., & Awasthi, A. (2018). Investigating rank reversal in reciprocal fuzzy preference relation based on additive consistency: Causes and solutions. Computers & Industrial Engineering, 115, 573-581. doi:10.1016/j.cie.2017.11.027Aires, R. F. de F., & Ferreira, L. (2019). A new approach to avoid rank reversal cases in the TOPSIS method. Computers & Industrial Engineering, 132, 84-97. doi:10.1016/j.cie.2019.04.023Emrouznejad, A., & Yang, G. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4-8. doi:10.1016/j.seps.2017.01.008Arya, A., & Yadav, S. P. (2017). Development of FDEA Models to Measure the Performance Efficiencies of DMUs. International Journal of Fuzzy Systems, 20(1), 163-173. doi:10.1007/s40815-017-0325-yMufazzal, S., & Muzakkir, S. M. (2018). A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals. Computers & Industrial Engineering, 119, 427-438. doi:10.1016/j.cie.2018.03.045Kaliszewski, I., & Podkopaev, D. (2016). Simple additive weighting—A metamodel for multiple criteria decision analysis methods. Expert Systems with Applications, 54, 155-161. doi:10.1016/j.eswa.2016.01.042Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2018). A new multi-criteria decision making approach for sustainable material selection problem: A critical study on rank reversal problem. Journal of Cleaner Production, 182, 466-484. doi:10.1016/j.jclepro.2018.02.062Chen, Z., Ming, X., Zhang, X., Yin, D., & Sun, Z. (2019). A rough-fuzzy DEMATEL-ANP method for evaluating sustainable value requirement of product service system. Journal of Cleaner Production, 228, 485-508. doi:10.1016/j.jclepro.2019.04.145Jumaah, F. M., Zadain, A. A., Zaidan, B. B., Hamzah, A. K., & Bahbibi, R. (2018). Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement, 118, 83-95. doi:10.1016/j.measurement.2018.01.011Singh, A., & Prasher, A. (2017). Measuring healthcare service quality from patients’ perspective: using Fuzzy AHP application. Total Quality Management & Business Excellence, 30(3-4), 284-300. doi:10.1080/14783363.2017.1302794Otay, İ., Oztaysi, B., Cevik Onar, S., & Kahraman, C. (2017). Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowledge-Based Systems, 133, 90-106. doi:10.1016/j.knosys.2017.06.028Awasthi, A., Govindan, K., & Gold, S. (2018). Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. International Journal of Production Economics, 195, 106-117. doi:10.1016/j.ijpe.2017.10.013Gul, M., Guneri, A. F., & Nasirli, S. M. (2018). A fuzzy-based model for risk assessment of routes in oil transportation. International Journal of Environmental Science and Technology, 16(8), 4671-4686. doi:10.1007/s13762-018-2078-zKazancoglu, Y., Kazancoglu, I., & Sagnak, M. (2018). Fuzzy DEMATEL-based green supply chain management performance. Industrial Management & Data Systems, 118(2), 412-431. doi:10.1108/imds-03-2017-0121Abdullah, L., & Zulkifli, N. (2015). Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: An application to human resource management. Expert Systems with Applications, 42(9), 4397-4409. doi:10.1016/j.eswa.2015.01.021Ashtiani, M., & Azgomi, M. A. (2016). A hesitant fuzzy model of computational trust considering hesitancy, vagueness and uncertainty. Applied Soft Computing, 42, 18-37. doi:10.1016/j.asoc.2016.01.023Zyoud, S. H., & Fuchs-Hanusch, D. (2017). A bibliometric-based survey on AHP and TOPSIS techniques. Expert Systems with Applications, 78, 158-181. doi:10.1016/j.eswa.2017.02.016Scholz, S., Ngoli, B., & Flessa, S. (2015). Rapid assessment of infrastructure of primary health care facilities – a relevant instrument for health care systems management. BMC Health Services Research, 15(1). doi:10.1186/s12913-015-0838-8Ivlev, I., Vacek, J., & Kneppo, P. (2015). Multi-criteria decision analysis for supporting the selection of medical devices under uncertainty. European Journal of Operational Research, 247(1), 216-228. doi:10.1016/j.ejor.2015.05.075Kovacs, E., Strobl, R., Phillips, A., Stephan, A.-J., Müller, M., Gensichen, J., & Grill, E. (2018). Systematic Review and Meta-analysis of the Effectiveness of Implementation Strategies for Non-communicable Disease Guidelines in Primary Health Care. Journal of General Internal Medicine, 33(7), 1142-1154. doi:10.1007/s11606-018-4435-5Morley, C., Unwin, M., Peterson, G. M., Stankovich, J., & Kinsman, L. (2018). Emergency department crowding: A systematic review of causes, consequences and solutions. PLOS ONE, 13(8), e0203316. doi:10.1371/journal.pone.0203316Hermann, R. M., Long, E., & Trotta, R. L. (2019). Improving Patients’ Experiences Communicating With Nurses and Providers in the Emergency Department. Journal of Emergency Nursing, 45(5), 523-530. doi:10.1016/j.jen.2018.12.001Hawley, K. L., Mazer-Amirshahi, M., Zocchi, M. S., Fox, E. R., & Pines, J. M. (2015). Longitudinal Trends in U.S. Drug Shortages for Medications Used in Emergency Departments (2001-2014). Academic Emergency Medicine, 23(1), 63-69. doi:10.1111/acem.12838Stang, A. S., Crotts, J., Johnson, D. W., Hartling, L., & Guttmann, A. (2015). Crowding Measures Associated With the Quality of Emergency Department Care: A Systematic Review. Academic Emergency Medicine, 22(6), 643-656. doi:10.1111/acem.12682Chanamool, N., & Naenna, T. (2016). Fuzzy FMEA application to improve decision-making process in an emergency department. Applied Soft Computing, 43, 441-453. doi:10.1016/j.asoc.2016.01.007Farup, P. G. (2015). Are measurements of patient safety culture and adverse events valid and reliable? Results from a cross sectional study. BMC Health Services Research, 15(1). doi:10.1186/s12913-015-0852-xCarter, E. J., Pouch, S. M., & Larson, E. L. (2013). The Relationship Between Emergency Department Crowding and Patient Outcomes: A Systematic Review. Journal of Nursing Scholarship, 46(2), 106-115. doi:10.1111/jnu.12055Ebben, R. H. A., Siqeca, F., Madsen, U. R., Vloet, L. C. M., & van Achterberg, T. (2018). Effectiveness of implementation strategies for the improvement of guideline and protocol adherence in emergency care: a systematic review. BMJ Open, 8(11), e017572. doi:10.1136/bmjopen-2017-017572Innes, G. D., Sivilotti, M. L. A., Ovens, H., McLelland, K., Dukelow, A., Kwok, E., … Chochinov, A. (2018). Emergency overcrowding and access block: A smaller problem than we think. CJEM, 21(2), 177-185. doi:10.1017/cem.2018.446Di Somma, S., Paladino, L., Vaughan, L., Lalle, I., Magrini, L., & Magnanti, M. (2014). Overcrowding in emergency department: an international issue. Internal and Emergency Medicine, 10(2), 171-175. doi:10.1007/s11739-014-1154-8Uthman, O. A., Walker, C., Lahiri, S., Jenkinson, D., Adekanmbi, V., Robertson, W., & Clarke, A. (2018). General practitioners providing non-urgent care in emergency department: a natural experiment. BMJ Open, 8(5), e019736. doi:10.1136/bmjopen-2017-019736Razzak, J. A., Baqir, S. M., Khan, U. R., Heller, D., Bhatti, J., & Hyder, A. A. (2013). Emergency and trauma care in Pakistan: a cross-sectional study of healthcare levels. Emergency Medicine Journal, 32(3), 207-213. doi:10.1136/emermed-2013-202590Dart, R. C., Goldfrank, L. R., Erstad, B. L., Huang, D. T., Todd, K. H., Weitz, J., … Anderson, V. E. (2018). Expert Consensus Guidelines for Stocking of Antidotes in Hospitals That Provide Emergency Care. Annals of Emergency Medicine, 71(3), 314-325.e1. doi:10.1016/j.annemergmed.2017.05.021Mkoka, D. A., Goicolea, I., Kiwara, A., Mwangu, M., & Hurtig, A.-K. (2014). Availability of drugs and medical supplies for emergency obstetric care: experience of health facility managers in a rural District of Tanzania. BMC Pregnancy and Childbirth, 14(1). doi:10.1186/1471-2393-14-108Beck, M. J., Okerblom, D., Kumar, A., Bandyopadhyay, S., & Scalzi, L. V. (2016). Lean intervention improves patient discharge times, improves emergency department throughput and reduces congestion. Hospital Practice, 44(5), 252-259. doi:10.1080/21548331.2016.1254559Morais Oliveira, M., Marti, C., Ramlawi, M., Sarasin, F. P., Grosgurin, O., Poletti, P.-A., … Rutschmann, O. T. (2018). Impact of a patient-flow physician coordinator on waiting times and length of stay in an emergency department: A before-after cohort study. PLOS ONE, 13(12), e0209035. doi:10.1371/journal.pone.0209035Vermeulen, M. J., Stukel, T. A., Boozary, A. S., Guttmann, A., & Schull, M. J. (2016). The Effect of Pay for Performance in the Emergency Department on Patient Waiting Times and Quality of Care in Ontario, Canada: A Difference-in-Differences Analysis. Annals of Emergency Medicine, 67(4), 496-505.e7. doi:10.1016/j.annemergmed.2015.06.028Singh, S., Lin, Y.-L., Nattinger, A. B., Kuo, Y.-F., & Goodwin, J. S. (2015). Variation in readmission rates by emergency departments and emergency department providers caring for patients after discharge. Journal of Hospital Medicine, 10(11), 705-710. doi:10.1002/jhm.2407Källberg, A.-S., Göransson, K. E., Florin, J., Östergren, J., Brixey, J. J., & Ehrenberg, A. (2015). Contributing factors to errors in Swedish emergency departments. International Emergency Nursing, 23(2), 156-161. doi:10.1016/j.ienj.2014.10.002Riga, M., Vozikis, A., Pollalis, Y., & Souliotis, K. (2015). MERIS (Medical Error Reporting Information System) as an innovative patient safety intervention: A health policy perspective. Health Policy, 119(4), 539-548. doi:10.1016/j.healthpol.2014.12.006Norman, G. R., Monteiro, S. D., Sherbino, J., Ilgen, J. S., Schmidt, H. G., & Mamede, S. (2017). The Causes of Errors in Clinical Reasoning. Academic Medicine, 92(1), 23-30. doi:10.1097/acm.0000000000001421Lisbon, D., Allin, D., Cleek, C., Roop, L., Brimacombe, M., Downes, C., & Pingleton, S. K. (2014). Improved Knowledge, Attitudes, and Behaviors After Implementation of TeamSTEPPS Training in an Academic Emergency Department. American Journal of Medical Quality, 31(1), 86-90. doi:10.1177/1062860614545123Li, L., Georgiou, A., Vecellio, E., Eigenstetter, A., Toouli, G., Wilson, R., & Westbrook, J. I. (2015). The Effect of Laboratory Testing on Emergency Department Length of Stay: A Multihospital Longitudinal Study Applying a Cross‐classified Random‐effect Modeling Approach. Academic Emergency Medicine, 22(1), 38-46. doi:10.1111/acem.12565Telem, D. A., Yang, J., Altieri, M., Patterson, W., Peoples, B., Chen, H., … Pryor, A. D. (2016). Rates and Risk Factors for Unplanned Emergency Department Utilization and Hospital Readmission Following Bariatric Surgery. Annals of Surgery, 263(5), 956-960. doi:10.1097/sla.0000000000001536Rigobello, M. C. G., Carvalho, R. E. F. L. de, Guerreiro, J. M., Motta, A. P. G., Atila, E., & Gimenes, F. R. E. (2017). The perception of the patient safety climate by professionals of the emergency department. International Emergency Nursing, 33, 1-6. doi:10.1016/j.ienj.2017.03.003Farmer, B. (2016). Patient Safety in the Emergency Department. Emergency Medicine, 48(9), 396-404. doi:10.12788/emed.2016.0052Liu, H.-C., You, J.-X., Zhen, L., & Fan, X.-J. (2014). A novel hybrid multiple criteria decision making model for material selection with target-based criteria. Materials & Design, 60, 380-390. doi:10.1016/j.matdes.2014.03.071Kou, G., Ergu, D., & Shang, J. (2014). Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction. European Journal of Operational Research, 236(1), 261-271. doi:10.1016/j.ejor.2013.11.035Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2017). Supplier evaluation and selection in fuzzy environments: a review of MADM approaches. Economic Research-Ekonomska Istraživanja, 30(1), 1073-1118. doi:10.1080/1331677x.2017.1314828Barrios, M. A. O., De Felice, F., Negrete, K. P., Romero, B. A., Arenas, A. Y., & Petrillo, A. (2016). An AHP-Topsis Integrated Model for Selecting the Most Appropriate Tomography Equipment. International Journal of Information Technology & Decision Making, 15(04), 861-885. doi:10.1142/s021962201640006xYeh, D.-Y., & Cheng, C.-H. (2016). Performance Management of Taiwan’s National Hospitals. International Journal of Information Technology & Decision Making, 15(01), 187-213. doi:10.1142/s0219622014500199Chen, T.-Y. (2014). An Interactive Signed Distance Approach for Multiple Criteria Group Decision-Making Based on Simple Additive Weighting Method with Incomplete Preference Information Defined by Interval Type-2 Fuzzy Sets. International Journal of Information Technology & Decision Making, 13(05), 979-1012. doi:10.1142/s0219622014500229Gou, X., Xu, Z., & Liao, H. (2019). Hesitant Fuzzy Linguistic Possibility Degree-Based Linear Assignment Method for Multiple Criteria Decision-Making. International Journal of Information Technology & Decision Making, 18(01), 35-63. doi:10.1142/s0219622017500377Saksrisathaporn, K., Bouras, A., Reeveerakul, N., & Charles, A. (2016). Application of a Decision Model by Using an Integration of AHP and TOPSIS Approaches within Humanitarian Operation Life Cycle. International Journal of Information Technology & Decision Making, 15(04), 887-918. doi:10.1142/s0219622015500261Hsiao, B., & Chen, L.-H. (2019). Performance Evaluation for Taiwanese Hospitals by Multi-Activity Network Data Envelopment Analysis. International Journal of Information Technology & Decision Making, 18(03), 1009-1043. doi:10.1142/s0219622018500165Saaty, T. L., & Ergu, D. (2015). When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods. International Journal of Information Technology & Decision Making, 14(06), 1171-1187. doi:10.1142/s021962201550025xChang, K.-H., Chang, Y.-C., & Lee, Y.-T. (2014). Integrating TOPSIS and DEMATEL Methods to Rank the Risk of Failure of FMEA. International Journal of Information Technology & Decision Making, 13(06), 1229-1257. doi:10.1142/s0219622014500758Yeh, T.-M., & Huang, Y.-L. (2014). Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP. Renewable Energy, 66, 159-169. doi:10.1016/j.renene.2013.12.003Ortíz, M. A., Felizzola, H. A., & Isaza, S. N. (2015). A contrast between DEMATEL-ANP an
The LINGO code and instructions for SECA
The file contains the LINGO code and instructions for using SECA (Simultaneous Evaluation of Criteria and Alternatives) in multi-criteria decision-making problems
- …