10 research outputs found

    Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018

    Get PDF
    Background: Human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS) is still among the leading causes of disease burden and mortality in sub-Saharan Africa (SSA), and the world is not on track to meet targets set for ending the epidemic by the Joint United Nations Programme on HIV/AIDS (UNAIDS) and the United Nations Sustainable Development Goals (SDGs). Precise HIV burden information is critical for effective geographic and epidemiological targeting of prevention and treatment interventions. Age- and sex-specific HIV prevalence estimates are widely available at the national level, and region-wide local estimates were recently published for adults overall. We add further dimensionality to previous analyses by estimating HIV prevalence at local scales, stratified into sex-specific 5-year age groups for adults ages 15–59 years across SSA. Methods: We analyzed data from 91 seroprevalence surveys and sentinel surveillance among antenatal care clinic (ANC) attendees using model-based geostatistical methods to produce estimates of HIV prevalence across 43 countries in SSA, from years 2000 to 2018, at a 5 × 5-km resolution and presented among second administrative level (typically districts or counties) units. Results: We found substantial variation in HIV prevalence across localities, ages, and sexes that have been masked in earlier analyses. Within-country variation in prevalence in 2018 was a median 3.5 times greater across ages and sexes, compared to for all adults combined. We note large within-district prevalence differences between age groups: for men, 50% of districts displayed at least a 14-fold difference between age groups with the highest and lowest prevalence, and at least a 9-fold difference for women. Prevalence trends also varied over time; between 2000 and 2018, 70% of all districts saw a reduction in prevalence greater than five percentage points in at least one sex and age group. Meanwhile, over 30% of all districts saw at least a five percentage point prevalence increase in one or more sex and age group. Conclusions: As the HIV epidemic persists and evolves in SSA, geographic and demographic shifts in prevention and treatment efforts are necessary. These estimates offer epidemiologically informative detail to better guide more targeted interventions, vital for combating HIV in SSA

    Traditional herbal medicine in Far-west Nepal: a pharmacological appraisal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant species have long been used as principal ingredients of traditional medicine in far-west Nepal. The medicinal plants with ethnomedicinal values are currently being screened for their therapeutic potential but their data and information are inadequately compared and analyzed with the <it>Ayurveda </it>and the phytochemical findings.</p> <p>Methods</p> <p>The present study evaluated ethnomedicinal plants and their uses following literature review, comparison, field observations, and analysis. Comparison was made against earlier standard literature of medicinal plants and ethnomedicine of the same area, the common uses of the <it>Ayurveda </it>and the latest common phytochemical findings. The field study for primary data collection was carried out from 2006-2008.</p> <p>Results</p> <p>The herbal medicine in far-west Nepal is the basis of treatment of most illness through traditional knowledge. The medicine is made available via ancient, natural health care practices such as tribal lore, home herbal remedy, and the <it>Baidhya</it>, <it>Ayurveda </it>and <it>Amchi </it>systems. The traditional herbal medicine has not only survived but also thrived in the trans-cultural environment with its intermixture of ethnic traditions and beliefs. The present assessment showed that traditional herbal medicine has flourished in rural areas where modern medicine is parsimoniously accessed because of the high cost and long travel time to health center. Of the 48 Nepalese medicinal plants assessed in the present communication, about half of the species showed affinity with the common uses of the <it>Ayurveda</it>, earlier studies and the latest phytochemical findings. The folk uses of <it>Acacia catechu </it>for cold and cough, <it>Aconitum spicatum </it>as an analgesic, <it>Aesculus indica </it>for joint pain, <it>Andrographis paniculata </it>for fever, <it>Anisomeles indica </it>for urinary affections, <it>Azadirachta indica </it>for fever, <it>Euphorbia hirta </it>for asthma, <it>Taxus wallichiana </it>for tumor control, and <it>Tinospora sinensis </it>for diabetes are consistent with the latest pharmacological findings, common Ayurvedic and earlier uses.</p> <p>Conclusions</p> <p>Although traditional herbal medicine is only a primary means of health care in far-west Nepal, the medicine has been pursued indigenously with complementing pharmacology and the <it>Ayurveda</it>. Therefore, further pharmacological evaluation of traditional herbal medicine deserves more attention.</p

    Real Interest Rate Parity: Long-Run and Short-Run Analysis Using Wavelets

    No full text
    In this article, long-run and short-run relationships among real interest rates in G-7 countries are empirically analyzed. The evidence suggests the existence of long-run relationships among these real interest rates. However, the long-run relationship is not an equality relationship. Short-run relationships are estimated using dynamic simultaneous equation models. They reveal that the real interest rates of non-U.S. G-7 countries react and adjust to long-run disequilibrium conditions. A more detailed analysis based on wavelet transform indicates the existence of both short-run and long-run relationships; however, strict interest rate parity does not seem to hold true. Copyright Springer Science + Business Media, Inc. 2005real interest rate parity, short-run, long-run, wavelet,

    Relationship between Treasury bills and Eurodollars: Theoretical and Empirical Analyses

    No full text
    In this paper, we derive an equilibrium relationship between the yields on Eurodollar and Treasury bills based on equivalent martingale results derived by Harrison and Kreps ( 1979 ) and Harrison and Pliska ( 1981 , 1983 ) as well as the corporate debt pricing model developed by Merton ( 1974 ). The derived equilibrium relationship incorporates the models used by Booth and Tse ( 1995 ) and Shrestha and Welch ( 2001 ) as special cases. The equilibrium relationship indicates that the conditional volatility of the yield on Eurodollars explains the variation in the TED spread. We empirically test the equilibrium relationship using a GARCH-M model and the concept of fractional cointegration. We use both the ex ante data implied by the respective futures contracts as well as the ex post spot data with daily, weekly and monthly frequencies. We find empirical support for the Equilibrium relationship. Copyright Springer Science+Business Media, LLC 2007Stationary, Fractional cointegration, TED spread,

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore