11 research outputs found

    COVID-19 lockdown induced changes in NO2 levels across India observed by multi-satellite and surface observations

    Get PDF
    © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.We have estimated the spatial changes in NO 2levels over different regions of India during the COVID-19 lockdown (25 March-3 May 2020) using the satellite-based tropospheric column NO 2observed by the Ozone Monitoring Instrument (OMI) and the Tropospheric Monitoring Instrument (TROPOMI), as well as surface NO 2concentrations obtained from the Central Pollution Control Board (CPCB) monitoring network. A substantial reduction in NO 2levels was observed across India during the lockdown compared to the same period during previous business-as-usual years, except for some regions that were influenced by anomalous fires in 2020. The reduction (negative change) over the urban agglomerations was substantial (~20 %-40 %) and directly proportional to the urban size and population density. Rural regions across India also experienced lower NO 2values by ~15 %-25 %. Localised enhancements in NO 2associated with isolated emission increase scattered across India were also detected. Observed percentage changes in satellite and surface observations were consistent across most regions and cities, but the surface observations were subject to larger variability depending on their proximity to the local emission sources. Observations also indicate NO 2enhancements of up to~25%during the lockdown associated with fire emissions over the north-east of India and some parts of the central regions. In addition, the cities located near the large fire emission sources show much smaller NO 2reduction than other urban areas as the decrease at the surface was masked by enhancement in NO 2due to the transport of the fire emissions.Peer reviewedFinal Published versio

    Assessment of Indian summer monsoon variability in a regional climate model coupled to a slab ocean model

    No full text
    A suite of Regional Climate Model (RegCM) experiments are performed over south Asia to examine the skill of RegCM to simulate the seasonal and sub-seasonal mean features of Indian summer monsoon (ISM). Because of coupled nature of ISM, three model experiments with RegCM are conducted to examine the skill of coupled and uncoupled configurations of RegCM by forcing it with observed SST (Exp1), coupling it to a simple slab ocean model (SOM) with constant mixed layer depth (MLD; Exp2) and with climatology of MLD (Exp3). The coupled experiments show an overall improvement in several aspects of ISM variability at seasonal and intraseasonal time-scales, despite bias in simulated SSTs. Between coupled experiments; Exp3 reduces biases in SST distribution over the region to the north of Arabian Peninsula, eastern Arabian Sea (AS), and broadly over north Indian Ocean (NIO). Noteworthy is the improved precipitation over central India (CI), head Bay of Bengal (BoB), as well as the representation of easterly wind shear in coupled experiments. At intraseasonal time scales, Exp3 produces spectral peaks above red noise at 25–50-day and 15–20-day periods closely representing the northward propagating intraseasonal mode and quasi-biweekly oscillating mode as in observed precipitation. The improved representation of spatial distribution of intraseasonal activity over NIO as well as the SST and precipitation relationships over head BoB and eastern AS is attributed to better representation of air-sea interaction in Exp3. In brief, the coupling improves the model skill for the true representation of mean ISM variability during boreal summer, and the thorough evaluation of model for longer periods is required to employ it as a downscaling tool for regional climate change studies

    Performance evaluation of regional climate model to simulate sub-seasonal variability of Indian Summer Monsoon

    No full text
    The study aims to evaluate the regional climate model (RegCM) over South Asian (SA) CORDEX domain to represent seasonal and sub-seasonal variability of Indian Summer Monsoon (ISM). The model’s ability is evaluated by conducting two sets of experiments using one-tier approach of coupling the RegCM with a simple mixed-layer slab ocean model (SOM) and the two-tier approach of prescribing sea surface temperature (SST) to RegCM. Two model experiments are initialized at 1st January 2000 for a period of 13 year continuous simulation at a spatial resolution of 50 km. It is found that, one-tier approach realistically represents the spatial distribution of precipitation with significant improvement noticed over central India (CI) and head Bay of Bengal (BoB) regions. In addition, it also fairly reproduced the observed mean meridional circulation response to the diabatic heating produced during ISM. Most importantly, in one-tier approach the model could able to represent the observed SST and precipitation (P) relationship with significant improvement in correlation and model response time. An important result is the representation of northwest-southeast tilt of precipitation anomalies during active/break phase of monsoon. Additionally, the lagged response of vertical profiles of specific humidity, omega, vorticity and divergence over CI with respect to peak rainfall anomaly (active phase) are relatively better represented in one-tier approach. In brief, coupling improves the performance of RegCM in simulating the space–time characteristics of monsoon ISO mode

    Representation of monsoon intraseasonal oscillations in regional climate model:sensitivity to convective physics

    No full text
    The aim of the study is to evaluate the performance of regional climate model (RegCM) version 4.4 over south Asian CORDEX domain to simulate seasonal mean and monsoon intraseasonal oscillations (MISOs) during Indian summer monsoon. Three combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate the seasonal mean low level wind pattern though they differ in simulating mean precipitation pattern. All models produce dry bias in precipitation over Indian land region except in RegCM-EG where relatively low value of dry bias is observed. On seasonal scale, the performance of RegCM-EG is more close to observation though it fails at intraseasonal time scales. In wave number-frequency spectrum, the observed peak in zonal wind (850 hPa) at 40–50 day scale is captured by all models with a slight change in amplitude, however, the 40–50 day peak in precipitation is completely absent in RegCM-EG. The space–time characteristics of MISOs are well captured by RegCM-EE over RegCM-GE, however it fails to show the eastward propagation of the convection across the Maritime Continent. Except RegCM-EE all other models completely underestimates the moisture advection from Equatorial Indian Ocean onto Indian land region during life-cycle of MISOs. The characteristics of MISOs are studied for strong (SM) and weak (WM) monsoon years and the differences in model performances are analyzed. The wavelet spectrum of rainfall over central India denotes that, the SM years are dominated by high frequency oscillations (period 30 days) along with dominated low periods (20 days. Except RegCM-EE, all other models fail to capture the observed spectral features for SM and WM years

    An objective criterion for the identification of breaks in Indian summer monsoon rainfall

    No full text
    We proposed a new objective criterion for discerning breaks in Indian summer monsoon rainfall, which is based on grid-level rainfall threshold. The identified breaks reproduced all well-known breaks discussed in the literature, but are relatively fewer in number. The correlation analysis between the number of break days and all-India seasonal rainfall is not only high (R2 =−0.77) but also reproduced well-known association between El Nino and bad monsoon years. The fraction of seasonal rainfall in break days is found to be smaller (<10%) over most part of India than earlier studies, indicating that the discerned spells are valid for a large part of India

    Appraisal of recent theories to understand cyclogenesis pathways of tropical cyclone madi (2013)

    No full text
    The present study aims to examine the new understanding of cyclogenesis by analyzing the genesis sequence of formation of a very severe cyclonic storm Madi (6-13 December 2013) that occurred over the Bay of Bengal. We have generated a high-resolution (18 km, 6 km, and 2 km) analysis using three-dimensional variational data assimilation technique and Weather Research and Forecasting model. The genesis sequence of Madi cyclone is analyzed using the concepts in the marsupial theory and other theories of tropical cyclone formation. Major results are as follows: The developed analysis is found useful for tracking the movement of westward moving parent disturbance from 15 days prior to the genesis; identifying developed pouch region in the Lagrangian frame of reference; understanding the evolution of the pouch and convection within the pouch region and for the study of intensification inside the pouch region. Also, large-scale priming of environment concurs with the hypotheses of the marsupial theory of tropical cyclogenesis. The analysis of dynamical and thermodynamical processes within the pouch region showed gradual moistening, uplifting of moisture, diabatic heating causing buoyant convection in the vorticity-rich environment followed by vortex tube stretching, development of convection, heavy precipitation, strengthening of lower level convergence, and hence spin-up during a day or two preceding the genesis of Madi cyclone. In general, it is concluded that intensification within pouch region during the cyclogenesis phase followed the marsupial paradigm and bottom-up mechanism

    A comparative study on the genesis of North Indian Ocean tropical cyclone madi (2013) and Atlantic Ocean tropical cyclone florence (2006)

    No full text
    A modeling study has been carried out to understand the similarities and differences in the genesis sequence of a Bay of Bengal tropical cyclone Madi (6-13 December 2013) and the Atlantic Ocean tropical cyclone Florence (3-12 September 2006) on the applicability of hypotheses of the marsupial theory of tropical cyclogenesis. We examined the role of the protective pouch and warm core formation during their genesis and intensification phases. We have chosen tropical cyclone Madi and tropical cyclone Florence for our study specifically due to both of these tropical cyclones originated from westward moving parent disturbance embedded in the intertropical convergence zone. Also, the genesis and intensification of tropical cyclone Florence were accompanied by a series of Saharan dust outbreaks. Our results indicated that the dry air intrusion was not a dominant detrimental factor for the genesis of tropical cyclone Madi and showed rapid intensification within the pouch region. However, in the case of the tropical cyclone Florence, the delay in the intensification as a category 1 tropical cyclone from its tropical depression stage was due to entrainment of the dry air into the core of cyclonic vortex up to 700 hPa from above. The results from this study showed that the wave pouch played a most significant role in the vorticity upscale cascade (First hypothesis) and moisture aggregation (Second hypothesis) in pregenesis period of both the tropical cyclones. It also prevented the lateral dry air intrusion (Second hypothesis) from the Saharan Air Layer during the genesis phase of tropical cyclone Florence
    corecore