65 research outputs found

    Influence of different beverages on the force degradation of intermaxillary elastics: an in vitro study

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate in vitro the effects of frequently ingested beverages on force degradation of intermaxillary elastics. MATERIAL AND METHODS: One hundred and eighty 1/4-inch intermaxillary elastics (TP Orthodontics) were immersed into six different beverages: (1) Coca-Cola(®); (2) Beer; (3) Orange juice; (4) Red wine; (5) Coffee and (6) artificial saliva (control). The period of immersion was 15 min for the first and second cycles and 30 min for the third to fifth cycles. Tensile forces were read in a tensile testing machine before and after the five immersion cycles. One-way repeated measures ANOVA was used to identify significant differences. RESULTS: Force degradation was seen in all evaluated groups and at all observation periods (p<0.05). A greater degree of degradation was present at the initial periods, decreasing gradually over time. However, no statistically significant differences were seen among groups at the same periods, showing that different groups behaved similarly. CONCLUSION: The chemical nature of the evaluated beverages was not able to influence the degree of force degradation at all observation periods

    High-Throughput Proteomics Detection of Novel Splice Isoforms in Human Platelets

    Get PDF
    Alternative splicing (AS) is an intrinsic regulatory mechanism of all metazoans. Recent findings suggest that 100% of multiexonic human genes give rise to splice isoforms. AS can be specific to tissue type, environment or developmentally regulated. Splice variants have also been implicated in various diseases including cancer. Detection of these variants will enhance our understanding of the complexity of the human genome and provide disease-specific and prognostic biomarkers. We adopted a proteomics approach to identify exon skip events - the most common form of AS. We constructed a database harboring the peptide sequences derived from all hypothetical exon skip junctions in the human genome. Searching tandem mass spectrometry (MS/MS) data against the database allows the detection of exon skip events, directly at the protein level. Here we describe the application of this approach to human platelets, including the mRNA-based verification of novel splice isoforms of ITGA2, NPEPPS and FH. This methodology is applicable to all new or existing MS/MS datasets

    Identification of β-Secretase (BACE1) Substrates Using Quantitative Proteomics

    Get PDF
    β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease with a lumenal active site that sheds the ectodomains of membrane proteins through juxtamembrane proteolysis. BACE1 has been studied principally for its role in Alzheimer's disease as the β-secretase responsible for generating the amyloid-β protein. Emerging evidence from mouse models has identified the importance of BACE1 in myelination and cognitive performance. However, the substrates that BACE1 processes to regulate these functions are unknown, and to date only a few β-secretase substrates have been identified through candidate-based studies. Using an unbiased approach to substrate identification, we performed quantitative proteomic analysis of two human epithelial cell lines stably expressing BACE1 and identified 68 putative β-secretase substrates, a number of which we validated in a cell culture system. The vast majority were of type I transmembrane topology, although one was type II and three were GPI-linked proteins. Intriguingly, a preponderance of these proteins are involved in contact-dependent intercellular communication or serve as receptors and have recognized roles in the nervous system and other organs. No consistent sequence motif predicting BACE1 cleavage was identified in substrates versus non-substrates. These findings expand our understanding of the proteins and cellular processes that BACE1 may regulate, and suggest possible mechanisms of toxicity arising from chronic BACE1 inhibition

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed

    Signals in the Soil: An Introduction to Wireless Underground Communications

    Get PDF
    In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well

    TMJ response to mandibular advancement surgery: an overview of risk factors

    Get PDF
    Objective: In order to understand the conflicting information on temporomandibular joint (TMJ) pathophysiologic responses after mandibular advancement surgery, an overview of the literature was proposed with a focus on certain risk factors. Methods: A literature search was carried out in the Cochrane, PubMed, Scopus and Web of Science databases in the period from January 1980 through March 2013. Various combinations of keywords related to TMJ changes [disc displacement, arthralgia, condylar resorption (CR)] and aspects of surgical intervention (fixation technique, amount of advancement) were used. A hand search of these papers was also carried out to identify additional articles. Results: A total of 148 articles were considered for this overview and, although methodological troubles were common, this review identified relevant findings which the practitioner can take into consideration during treatment planning: 1- Surgery was unable to influence TMJ with preexisting displaced disc and crepitus; 2- Clicking and arthralgia were not predictable after surgery, although there was greater likelihood of improvement rather than deterioration; 3- The amount of mandibular advancement and counterclockwise rotation, and the rigidity of the fixation technique seemed to influence TMJ position and health; 4- The risk of CR increased, especially in identified high-risk cases. Conclusions: Young adult females with mandibular retrognathism and increased mandibular plane angle are susceptible to painful TMJ, and are subject to less improvement after surgery and prone to CR. Furthermore, thorough evidenced-based studies are required to understand the response of the TMJ after mandibular advancement surgery

    A review of the psychological and familial perspectives of childhood obesity

    Get PDF
    corecore