286 research outputs found

    Selective Fatty Acid Retention and Turnover in the Freshwater Amphipod Pallaseopsis quadrispinosa

    Get PDF
    Gammarid amphipods are a crucial link connecting primary producers with secondary consumers, but little is known about their nutritional ecology. Here we asked how starvation and subsequent feeding on different nutritional quality algae influences fatty acid retention, compound-specific isotopic carbon fractionation, and biosynthesis of ω-3 and ω-6 polyunsaturated fatty acids (PUFA) in the relict gammarid amphipod Pallaseopsis quadrispinosa. The fatty acid profiles of P. quadrispinosa closely matched with those of the dietary green algae after only seven days of refeeding, whereas fatty acid patterns of P. quadrispinosa were less consistent with those of the diatom diet. This was mainly due to P. quadrispinosa suffering energy limitation in the diatom treatment which initiated the metabolization of 16:1ω7 and partly 18:1ω9 for energy, but retained high levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) similar to those found in wild-caught organisms. Moreover, α-linolenic acid (ALA) from green algae was mainly stored and not allocated to membranes at high levels nor biosynthesized to EPA. The arachidonic acid (ARA) content in membrane was much lower than EPA and P. quadrispinosa was able to biosynthesize long-chain ω-6 PUFA from linoleic acid (LA). Our experiment revealed that diet quality has a great impact on fatty acid biosynthesis, retention and turnover in this consumer

    Selective Fatty Acid Retention and Turnover in the Freshwater Amphipod Pallaseopsis quadrispinosa

    Get PDF
    Gammarid amphipods are a crucial link connecting primary producers with secondary consumers, but little is known about their nutritional ecology. Here we asked how starvation and subsequent feeding on different nutritional quality algae influences fatty acid retention, compound-specific isotopic carbon fractionation, and biosynthesis of ω-3 and ω-6 polyunsaturated fatty acids (PUFA) in the relict gammarid amphipod Pallaseopsis quadrispinosa. The fatty acid profiles of P. quadrispinosa closely matched with those of the dietary green algae after only seven days of refeeding, whereas fatty acid patterns of P. quadrispinosa were less consistent with those of the diatom diet. This was mainly due to P. quadrispinosa suffering energy limitation in the diatom treatment which initiated the metabolization of 16:1ω7 and partly 18:1ω9 for energy, but retained high levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) similar to those found in wild-caught organisms. Moreover, α-linolenic acid (ALA) from green algae was mainly stored and not allocated to membranes at high levels nor biosynthesized to EPA. The arachidonic acid (ARA) content in membrane was much lower than EPA and P. quadrispinosa was able to biosynthesize long-chain ω-6 PUFA from linoleic acid (LA). Our experiment revealed that diet quality has a great impact on fatty acid biosynthesis, retention and turnover in this consumer

    Development of hemp hurd particleboards from formaldehyde-free resins

    Get PDF
    Low density of hemp hurd (Cannabis Sativa L), better end of life impact, performance comparable to wood chips and low energy requirement for cultivation make it a suitable alternative raw material for particleboards (Pb). However, due to concerns about sustainability and formaldehyde emissions, it is essential to develop the new bio-based resins from renewable resources. In this research, the mechanical and physical properties of Pb produced from hemp hurds (HH) and a variety of resins: Urea-formaldehyde (UF), formaldehyde-free acrylic resin (Acrodur®) and bio-based soy resin (Soyad™) were compared to those of wood particles (WP) bonded with UF. The results indicate that boards from HH are generally lighter than WP with a 5.6% variation between HH+UF and WP+UF. Hemp boards based on soy-resin showed higher tensile performance, with an average of 0.43 MPa compared to the 0.28 MPa and 0.24 MPa of (HH+UF) and (WP+UF) respectively. Nevertheless, thickness swelling (TS) of HH+UF (27%) was the least, while there was no significant difference in the water absorption (WA) compared to HH+Soyad4740, both were still lower than that of WP+UF. The overall outcome shows that bio-based soy resin can be a suitable alternative to UF as a binder in Pb production

    Chronic kidney disease increases the susceptibility to negative effects of low and high potassium intake

    Get PDF
    BackgroundDietary potassium (K+) has emerged as a modifiable factor for cardiovascular and kidney health in the general population, but its role in people with chronic kidney disease (CKD) is unclear. Here, we hypothesize that CKD increases the susceptibility to the negative effects of low and high K+ diets.MethodsWe compared the effects of low, normal and high KChloride (KCl) diets and a high KCitrate diet for 4 weeks in male rats with normal kidney function and in male rats with CKD using the 5/6th nephrectomy model (5/6Nx).ResultsCompared with rats with normal kidney function, 5/6Nx rats on the low KCl diet developed more severe extracellular and intracellular K+ depletion and more severe kidney injury, characterized by nephromegaly, infiltration of T cells and macrophages, decreased estimated glomerular filtration rate and increased albuminuria. The high KCl diet caused hyperkalemia, hyperaldosteronism, hyperchloremic metabolic acidosis and severe hypertension in 5/6Nx but not in sham rats. The high KCitrate diet caused hypochloremic metabolic alkalosis but attenuated hypertension despite higher abundance of the phosphorylated sodium chloride cotransporter (pNCC) and similar levels of plasma aldosterone and epithelial sodium channel abundance. All 5/6Nx groups had more collagen deposition than the sham groups and this effect was most pronounced in the high KCitrate group. Plasma aldosterone correlated strongly with kidney collagen deposition.ConclusionsCKD increases the susceptibility to negative effects of low and high K+ diets in male rats, although the injury patterns are different. The low K+ diet caused inflammation, nephromegaly and kidney function decline, whereas the high K+ diet caused hypertension, hyperaldosteronism and kidney fibrosis. High KCitrate attenuated the hypertensive but not the pro-fibrotic effect of high KCl, which may be attributable to K+-induced aldosterone secretion. Our data suggest that especially in people with CKD it is important to identify the optimal threshold of dietary K+ intake

    Metagenomic assembly is the main bottleneck in the identification of mobile genetic elements

    Get PDF
    Antimicrobial resistance genes (ARG) are commonly found on acquired mobile genetic elements (MGEs) such as plasmids or transposons. Understanding the spread of resistance genes associated with mobile elements (mARGs) across different hosts and environments requires linking ARGs to the existing mobile reservoir within bacterial communities. However, reconstructing mARGs in metagenomic data from diverse ecosystems poses computational challenges, including genome fragment reconstruction (assembly), high-throughput annotation of MGEs, and identification of their association with ARGs. Recently, several bioinformatics tools have been developed to identify assembled fragments of plasmids, phages, and insertion sequence (IS) elements in metagenomic data. These methods can help in understanding the dissemination of mARGs. To streamline the process of identifying mARGs in multiple samples, we combined these tools in an automated high-throughput open-source pipeline, MetaMobilePicker, that identifies ARGs associated with plasmids, IS elements and phages, starting from short metagenomic sequencing reads. This pipeline was used to identify these three elements on a simplified simulated metagenome dataset, comprising whole genome sequences from seven clinically relevant bacterial species containing 55 ARGs, nine plasmids and five phages. The results demonstrated moderate precision for the identification of plasmids (0.57) and phages (0.71), and moderate sensitivity of identification of IS elements (0.58) and ARGs (0.70). In this study, we aim to assess the main causes of this moderate performance of the MGE prediction tools in a comprehensive manner. We conducted a systematic benchmark, considering metagenomic read coverage, contig length cutoffs and investigating the performance of the classification algorithms. Our analysis revealed that the metagenomic assembly process is the primary bottleneck when linking ARGs to identified MGEs in short-read metagenomics sequencing experiments rather than ARGs and MGEs identification by the different tools

    Cellular origin and microRNA profiles of circulating extracellular vesicles in different stages of diabetic nephropathy

    Get PDF
    Background: Diabetic nephropathy (DN) is a major complication of diabetes and the main cause of end-stage renal disease. Extracellular vesicles (EVs) are small cell-derived vesicles that can alter disease progression by microRNA (miRNA) transfer. Methods: In this study, we aimed to characterize the cellular origin and miRNA content of EVs in plasma samples of type 2 diabetes patients at various stages of DN. Type 2 diabetes patients were classified in three groups: normoalbuminuria, microalbuminuria and macroalbuminuria. The concentration and cellular origin of plasma EVs were measured by flow cytometry. A total of 752 EV miRNAs were profiled in 18 subjects and differentially expressed miRNAs were validated. Results: Diabetic patients with microalbuminuria and/or macroalbuminuria showed elevated concentrations of total EVs and EVs from endothelial cells, platelets, leucocytes and erythrocytes compared with diabetic controls. miR-99a-5p was upregulated in macroalbuminuric patients compared with normoalbuminuric and microalbuminuric patients. Transfection of miR-99a-5p in cultured human podocytes downregulated mammalian target of rapamycin (mTOR) protein expression and downregulated the podocyte injury marker vimentin. Conclusions: Type 2 diabetes patients with microalbuminuria and macroalbuminuria display differential EV profiles. miR-99a-5p expression is elevated in EVs from macroalbuminuria and mTOR is its validated mRNA target

    European Society for Organ Transplantation (ESOT)-TLJ 3.0 Consensus on Histopathological Analysis of Pre-Implantation Donor Kidney Biopsy:Redefining the Role in the Process of Graft Assessment

    Get PDF
    The ESOT TLJ 3.0. consensus conference brought together leading experts in transplantation to develop evidence-based guidance on the standardization and clinical utility of pre-implantation kidney biopsy in the assessment of grafts from Expanded Criteria Donors (ECD). Seven themes were selected and underwent in-depth analysis after formulation of PICO (patient/population, intervention, comparison, outcomes) questions. After literature search, the statements for each key question were produced, rated according the GRADE approach [Quality of evidence: High (A), Moderate (B), Low (C); Strength of Recommendation: Strong (1), Weak (2)]. The statements were subsequently presented in-person at the Prague kick-off meeting, discussed and voted. After two rounds of discussion and voting, all 7 statements reached an overall agreement of 100% on the following issues: needle core/wedge/punch technique representatively [B,1], frozen/paraffin embedded section reliability [B,2], experienced/non-experienced on-call renal pathologist reproducibility/accuracy of the histological report [A,1], glomerulosclerosis/other parameters reproducibility [C,2], digital pathology/light microscopy in the measurement of histological variables [A,1], special stainings/Haematoxylin and Eosin alone comparison [A,1], glomerulosclerosis reliability versus other histological parameters to predict the graft survival, graft function, primary non-function [B,1]. This methodology has allowed to reach a full consensus among European experts on important technical topics regarding pre-implantation biopsy in the ECD graft assessment.</p

    Banff Digital Pathology Working Group: Going digital in transplant pathology.

    Get PDF
    The Banff Digital Pathology Working Group (DPWG) was formed in the time leading up to and during the joint American Society for Histocompatibility and Immunogenetics/Banff Meeting, September 23-27, 2019, held in Pittsburgh, Pennsylvania. At the meeting, the 14th Banff Conference, presentations directly and peripherally related to the topic of "digital pathology" were presented; and discussions before, during, and after the meeting have resulted in a list of issues to address for the DPWG. Included are practice standardization, integrative approaches for study classification, scoring of histologic parameters (eg, interstitial fibrosis and tubular atrophy and inflammation), algorithm classification, and precision diagnosis (eg, molecular pathways and therapeutics). Since the meeting, a survey with international participation of mostly pathologists (81%) was conducted, showing that whole slide imaging is available at the majority of centers (71%) but that artificial intelligence (AI)/machine learning was only used in ≈12% of centers, with a wide variety of programs/algorithms employed. Digitalization is not just an end in itself. It also is a necessary precondition for AI and other approaches. Discussions at the meeting and the survey highlight the unmet need for a Banff DPWG and point the way toward future contributions that can be made

    Conserved developmental trajectories of the cecal microbiota of broiler chickens in a field study

    Get PDF
    There is great interest in identifying gut microbiota development patterns and underlying assembly rules that can inform strategies to improve broiler health and performance. Microbiota stratification using community types helps to simplify complex and dynamic ecosystem principles of the intestinal microbiota. This study aimed to identify community types to increase insight in intestinal microbiota variation between broilers and to identify factors that explain this variation. A total of 10 well-performing poultry flocks on four farms were followed. From each flock, the cecal content of nine broilers was collected at 7, 14, and 35 days posthatch. A total of two robust community types were observed using different clustering methods, one of which was dominated by 7-day-old broilers, and one by 35-day-old broilers. Broilers, 14-day-old, were divided across both community types. This is the first study that showed conserved cecal microbiota development trajectories in commercial broiler flocks. In addition to the temporal development with age, the cecal microbiota variation between broilers was explained by the flock, body weight, and the different feed components. Our data support a conserved development of cecal microbiota, despite strong influence of environmental factors. Further investigation of mechanisms underlying microbiota development and function is required to facilitate intestinal health promoting management, diagnostics, and nutritional interventions
    • …
    corecore