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ABSTRACT

Antimicrobial resistance genes (ARG) are commonly found on acquired mobile genetic
elements (MGEs) such as plasmids or transposons. Understanding the spread of
resistance genes associated with mobile elements (mARGs) across different hosts and
environments requires linking ARGs to the existing mobile reservoir within bacterial
communities. However, reconstructing mARGs in metagenomic data from diverse
ecosystems poses computational challenges, including genome fragment reconstruc-
tion (assembly), high-throughput annotation of MGEs, and identification of their
association with ARGs. Recently, several bioinformatics tools have been developed to
identify assembled fragments of plasmids, phages, and insertion sequence (IS) elements
in metagenomic data. These methods can help in understanding the dissemination
of mARGs. To streamline the process of identifying mARGs in multiple samples,
we combined these tools in an automated high-throughput open-source pipeline,
MetaMobilePicker, that identifies ARGs associated with plasmids, IS elements and
phages, starting from short metagenomic sequencing reads. This pipeline was used to
identify these three elements on a simplified simulated metagenome dataset, comprising
whole genome sequences from seven clinically relevant bacterial species containing 55
ARGs, nine plasmids and five phages. The results demonstrated moderate precision
for the identification of plasmids (0.57) and phages (0.71), and moderate sensitivity
of identification of IS elements (0.58) and ARGs (0.70). In this study, we aim to
assess the main causes of this moderate performance of the MGE prediction tools
in a comprehensive manner. We conducted a systematic benchmark, considering
metagenomic read coverage, contig length cutoffs and investigating the performance
of the classification algorithms. Our analysis revealed that the metagenomic assembly
process is the primary bottleneck when linking ARGs to identified MGEs in short-read
metagenomics sequencing experiments rather than ARGs and MGEs identification by
the different tools.
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INTRODUCTION

Antimicrobial resistance (AMR) is an existing problem in veterinary and public health,
with an increasing number of infections caused by resistant bacteria. Globally, in 2019, an
estimated 1.27 million deaths were attributable to AMR (Murray et al., 2022). Antimicrobial
resistance genes (ARGs) may result from mutations in bacterial genomes or alternatively
be acquired from extrinsic sources. Acquired ARGs are frequently found on mobile genetic
elements (MGEs) such as plasmids or transposons (Partridge et al., 2018). These elements
can facilitate efficient spread by translocation via intragenic exchange between plasmids
and chromosomes (Borowiak et al., 2017), or disseminate between genomes in inter- and
intra-species horizontal gene transfer (HGT) events (Redondo-Salvo et al., 2020). AMR in
terms of public health is tightly connected to the health of domesticated pets and livestock,
as well as the environments humans share with these animals. These shared environments
represent key crossover points by which resistant bacteria and ARGs can spread across
various reservoirs, including clinical, agricultural and environmental reservoirs (Stanton et
al., 2020). Consequently, AMR presents itself not only as a public health challenge, but also
as a One Health issue (McEwen ¢ Collignon, 2018; Collignon ¢» McEwen, 2019; Despotovic
et al., 2023).

Until now, studies on the spread of MGEs containing ARGs (mARGs) between
different reservoirs like humans and animals have mostly been limited to clinically-
relevant pathogenic bacteria involving single isolate cultures in combination with whole
genome sequencing of single indicator organism isolates. Examples include studies on
the dissemination of extended-spectrum beta-lactamase (ESBL)-producing Escherichia
coli (Mughini-Gras et al., 2019), methicillin-resistant Staphylococcus aureus (MRSA) (Sieber
et al., 2018) and colistin-resistant (i.e, mcr-1) E. coli (Wang et al., 2018). However, mARGs
are not limited to pathogenic species; they are also present in commensal species ( Despotovic
et al., 2023) and can be transferred by several well-defined mechanisms such as conjugation
or transduction (Hall, Brockhurst & Harrison, 2017). Conversely, genomes of non-
pathogenic species in microbial communities are an important reservoir of mARGs that
can spread to clinically-important species (Lee et al., 2020), where they can persist even in
the absence of antimicrobial selection (Carroll & Wong, 2018). Therefore, ARGs spreading
within and between complex ecosystems contribute to the eco-evolutionary dynamics of
a microbial community, i.e., a microbiome (Coyte et al., 2022). Tt is therefore important
to investigate the entire AMR reservoir, known as the resistome, that is associated with
the detected mobilome within metagenomes of given microbiomes. The application of
metagenomic shotgun sequencing of bacterial communities can help achieve this objective.

Computationally, the analysis of metagenomic data poses additional challenges when
compared to the analysis of single bacterial isolate whole genome sequencing data.
Metagenomic data typically consists of a larger number of sequencing reads, with lower
per-genome coverage, while at the same time representing a higher taxonomic complexity.
As a result, metagenomic analysis tools require more computational resources compared
to whole genome sequencing tools. The difference in computational resources becomes
apparent in the metagenomic assembly step. Benchmarks of different metagenomic
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assembly tools show that metagenomic assemblers vary in the use of computational
resources. However, in general, well-performing metagenomic assemblers using variable
k-mer sizes such as MetaSPAdes (Nurk et al., 2017), MEGAHIT (Li et al., 2015a) and
IDBA-UD (Peng et al., 2012) tend to require the most resources, especially memory and
runtime (Mendes et al., 2023; Zhang et al., 2023; Quainoo et al., 2017). In addition, the

de Bruijn graph constructed by metagenomic assemblers has a higher complexity and

is therefore more challenging to traverse than those obtained from single isolate whole
genome sequencing assemblies. Similarly, the increase in the complexity and amount of
data produced by metagenomic assembly can lead to an increase in resource usage for post-
assembly processes such as functional annotation. Aside from computational resources,
annotation of metagenomic assemblies is complicated by the scarcity of reference databases
for uncultivated species and computational models (Liu ef al., 2022). The data in reference
databases for functional or taxonomic annotation is biased towards clinically relevant
and culturable species and strains, whereas the majority of diversity in a metagenomic
community, especially in anaerobic conditions such as the gut, consists of unculturable
species (Bernard et al., 2018). Computational models built for the annotation of specific
structures, like insertion sequences (IS) or plasmids, are trained on data which pose
this same challenge, i.e., biases for clinically-relevant and culturable species. This can
introduce a bias towards familiar data, akin to reference-based methods, even though
no reference database is used. Lastly, due to MGEs containing many repetitive regions
(Treangen ¢ Salzberg, 20115 Oliveira et al., 2010; Che et al., 2021), assembly algorithms
can have difficulty discerning different copies of repeat-rich parts of MGEs, resulting in
collapsed contigs (Torresen et al., 2019). Although mock communities are available, as well
as tools to simulate datasets from genomic sequences, these options also can be biased
towards clinically and culturable species, similar to reference databases. Hence, accurately
estimating authentic taxonomic diversity and complexity in complex ecosystems poses a
challenge with the existing tools and databases. Yet, in silico simulation of metagenomic
data is important to establish a ground truth to benchmark analysis tools.

To investigate the spread of mARGs in metagenomic data, our study aimed to evaluate
the effectiveness of several established tools in identifying key mobile genetic elements:
plasmids, insertion sequences, and phages. We integrated these tools into a comprehensive,
reproducible, modular and scalable open-source pipeline called MetaMobilePicker
(http:/metamobilepicker.nl). To validate the ability of these tools to identify mARGs in
metagenomes, we simulated a simplified microbial community using genomes and plasmids
from seven clinically relevant species. Our assessment revealed that the classification
algorithms and annotation tools were not performing optimally in recovering mARGs
effectively. In this study, we explored the reasons behind this suboptimal performance,
and showed that the accuracy of detecting mobile genetic elements and ARGs was highly
dependent on the biases introduced during metagenomic assembly.
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METHODS
MetaMobilePicker

MetaMobilePicker, available at http:/metamobilepicker.nl, is an open-source software
pipeline linking detected ARGs to MGEs in metagenomes. MetaMobilePicker was written
in Python 3.10 using the workflow management system Snakemake (Mdlder et al., 2021)
and was designed to run primarily on high-performance computation infrastructures,
as MetaSPAdes (Nurk et al., 2017) is resource-intensive (Zhang et al., 2023). Versions of
required software are listed in Table S1. The pipeline is installable as a Python package
or by using conda from the bioconda channel. The pipeline can be divided into four
parts: preprocessing metagenomic short-read sequences, genome fragment reconstruction,
ARG annotation, MGE identification and output construction linking ARGs to MGEs.
An overview of the overall workflow is displayed in Fig. 1. In the preprocessing steps,
sequencing reads are deduplicated for PCR artifacts and filtered for read quality and
(host) contamination. This is done using the QC module of Metagenome-Atlas (Kieser
et al., 2020). Next, a metagenome assembly is performed using metaSPAdes (Nurk et al.,
2017) on high-quality reads with default parameters as specified in the configuration
file. Very short contigs of length less than 1 kbp are discarded for their limited use in
downstream analyses. MGEs are identified using PlasClass (Pellow, Mizrahi ¢ Shamir,
2020), ISEScan (Xie ¢ Tang, 2017) and DeepVirFinder (Ren et al., 2020), respectively.
ARGs are then annotated using ABRicate (Seernann, 2023) on the ResFinder (Zankari et
al., 2012) database. Finally, all output files are combined, linking ARGs to MGEs if present
on the same contig.

Validation using simulated data

In order to validate the results of the different tools included in MetaMobilePicker
(PlasClass, ISEScan, DeepVirFinder and ABRicate), we constructed a simplified simulated
metagenomic dataset. We selected the genomes of seven highly resistant bacterial species
from the PATRIC database (Wattam et al., 2014 accessed on March 3rd 2021). For this
dataset, we selected a representative completed genome from E. coli, S. aureus, Enterococcus
faecalis, Mycobacterium tuberculosis, Salmonella enterica, Klebsiella pneumoniae and
Acinetobacter baumannii. In addition to these genomes, five phage genomes specific

to the selected genera were selected. Selected organisms and associated plasmids and
phages can be found in Table 1. Using the selected genomes, we simulated a dataset of
20 million paired-end reads (10 M per end) of 150 bp using InSilicoSeq (Gourlé et al.,
2019) using the MiSeq error profile. To test if 10 million simulated reads were sufficient to
resolve the complexity of the dataset without introducing large gaps when comparing the
metagenomic assembly to the reference genomes, we simulated 40 million reads per end
and subsampled them at intervals of 5 million reads between 5 and 30 million. We used
MetaQuast (Mikheenko, Saveliev ¢~ Gurevich, 2016) to calculate the genome completeness
per genome. In order to simulate different relative abundances of different genomes, we
generated abundance profiles for all species using a lognormal distribution. Additionally,
a copy number for the plasmids was determined using a geometric distribution with
probability P = min(1, M) where L is the length of the plasmid in bp, to simulate

r
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Figure 1 Workflow of the MetaMobilePicker pipeline. Colors indicate the different steps/modules in
the pipeline. Light blue: preprocessing and assembly. Blue: MGE identification. Dark blue: ARG anno-
tation. Orange: output construction. Software tools used are indicated in brackets. AMR: Antimicro-
bial resistance. MGE: Mobile Genetic Element. IS: Insertion Sequence. The pipeline is available at http:/
metamobilepicker.nl. For software references and versions see Table S1.

Full-size &l DOI: 10.7717/peerj.16695/fig-1

smaller plasmids having a higher probability of having a higher copy number than larger
plasmids and r is a reduction factor based on the order of magnitude of the sequence length.
For plasmids, we set r = 7 and for phages we set r = 5. This copy number was multiplied
by the abundance of the corresponding genome, and the abundances were normalized to
sum to one. The complete genome assemblies, plasmids and phages were annotated for
ARGs using ABRicate with the ResFinder. Additionally, ISEScan was used to identify the
present IS elements present in the sequences. To backtrace the contigs assembled during
the pipeline’s run associated with the plasmids and phages, we used Minimap2 (Li, 2018)
as part of the MetaQuast workflow. Contig alignments shorter than 65 bp and with identity
lower than 95% were removed, as per MetaQuast default.

To assess the performance of plasmid and phage classification, we calculated precision,
defined in Eq. (1), recall, defined in Eq. (2), and the F1-score, defined as the harmonic
mean between precision and recall. To assess the performance of the annotation of IS
elements and ARGs, we calculate the sensitivity as defined in Eq. (3).

Correctly predicted contigs

(1)

Precision = - ; Iy
Correctly predicted contigs+ False positives
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Table 1 Strain information for the selected genomes of the simulated dataset. Genbank ID, sequence length in kilobasepairs and relative abun-
dance per genomic unit. Relative abundance is established by determining a copy number based on a geometric distribution where smaller plasmids

and phages have a higher probability of occurring more than once.

Species - Sequence type Number Accession ID Sequence Relative

strain - phage of ARGs size (kbp) abundance

strain

A. baumanii - BJAB0715 - LZ35 chromosome, 1, NC_021733.1, 4,002, 0.02031,
plasmid, 2, NC_021734.1, 52, 0.02031,
phage 0 NC_031117.1 45 0.04424

E. faecalis - SCAID PHRX1- chromosome, 7, NZ_CP041877.1, 2,598, 0.02882,

2018 - IME_EF3 plasmid, 4, NZ_CP041878.1, 98, 0.02882
phage 0 NC_023595.2 42 0.02882

E. coli - AR-0427 chromosome, 1, NZ_CP044148.1, 5,530, 0.01734,
plasmid, 8, NZ_CP044149.1, 75, 0.01734
plasmid 0 NZ_CP044150.1 86 0.01734

K. pneumoniae - BJCFK909, chromosome, 3, CP034123.1, 5471, 0.03900,

NTUH-K2044-K1-1 plasmid, 5, CP034124.1, 200, 0.07800,
plasmid, 4, CP034125.1, 110, 0.03900,
plasmid, 0, CP034126.1, 86, 0.03900,
plasmid, 0, CP034127.1, 6, 0.03900,
phage 0 NC_025418.1 43 0.03900

M. tuberculosis - Beijing- chromosome, phage 2, NZ_CP017593.1, 4,427, 0.01338,

like/35049 - DaVinci 0 JF937092.1 52 0.01338

S. aureus - CMRSA-6 - §24-1 chromosome, 11, NZ_CP027788.1, 3,044, 0.13598,
phage 0 NC_016565.1 18 0.13598

S. enterica - 74-1357 chromosome, 1, NZ_CP018642.1, 4,698, 0.10244,
plasmid 6 NZ_CP018643.1 119 0.10244

Recall Correctly predicted contigs 2)
ecatl = ) . .
Correctly predicted contigs+ False negatives
o Correctly predicted ISelements or ARGs
Sensitivity = (3)

Total number of ISelements or ARGs

Bases not covered in simulated data

To infer the number of bases not covered by the simulated reads per reference genome, we
used BWA MEM (Li, 2013) to align the simulated reads to the reference genomes. Using
Samtools (Li et al., 2009), we inferred the coverage depth at each position on the reference
genomes, and considered bases with a depth of 0 as not covered, as no reads mapping to
these bases were found in the dataset.

RESULTS

Establishing a baseline to validate the performance of the detection
of MGEs and mARGs in metagenomes

We used reference genomes of seven bacterial species, including nine plasmids and five
genus-specific phages, to simulate metagenomic reads as a validation data set for the tools
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included in MetaMobilePicker (Table 1). To establish a baseline for the performances
of the detection tools for IS elements, plasmids, phages and ARGs, we ran ISEScan,
PlasClass, DeepVirFinder and ABRicate with the Resfinder database on the completely
sequenced reference whole-genome sequences as available in RefSeq and cross-checked
with the available NCBI annotation. This resulted in the detection of 417 IS elements

in the reference genomes, distributed among the seven bacterial genomes with most IS
elements detected in the E. coli chromosome (1 = 78) and least in the smallest of the two
E. coli plasmids (n = 3) (Fig. 2). PlasClass identified plasmids and chromosomes without
errors and misclassified two phages as plasmids (out of a total of five) based on a cut-off
score of 0.8. DeepVirfinder showed a perfect classification of phages and non-phages on
the reference data. Finally, to establish a baseline for the AMR identification step on the
finished reference genomes, we annotated the reference genomes using the ResFinder
database with ABRicate. This identified a total of 55 predicted ARGs from 38 different
families. Of these 55, 28 were only found once by ABRicate using the default parameters,
five ARGs were found twice (tetB, ermA, ant(9)-1a, aph(3/)-1II and blaSHV-12), three ARGs
were found three times (blaTEM, tetA and sul2), and two ARG (aph(6)-1d and aph(3”)-Ib)
were found four times. Two genes (tet(B) and aph(3”)-Ib) were found with two different
alleles. In the cases where multiple copies were identified, the ARGs were annotated in the
same replicon in two cases, in different replicons of the same species in one case and to
different replicons in two or more species in seven cases. Of these 55 ARGs, 29 genes are
present on plasmids, belonging to 20 different gene families. ARGs present in the reference
genomes, copy number and mobility of replicons are shown in Table S2.

Detection of MGEs and ARGs in the metagenome-assembled contigs
has a moderate accuracy
From the 20 different genomic replicons from seven bacterial species, we simulated 20M
metagenomic paired-end reads (10 million per end) using InSilicoSeq with different relative
abundances (Table 1). The simulated dataset of 10M paired end reads was used to run
MetaMobilePicker. After running the QC and assembly modules, the identification steps
identify three types of MGEs: (i) plasmids, (ii) IS elements and (iii) phage sequences.
Metagenomes often have a read depth ranging from 10 million - 70 million per sample
(Gweon et al., 2019), albeit with a far larger complexity than the validation data set simulated
here. To test to what extent the read depth influenced the resolution of the genomes in
our dataset, we simulated 40 million reads per end and subsampled them at 5, 10, 15, 20,
25 and 30 million reads and assembled them. We then used MetaQuast to calculate the
completeness per genome. The average genome completion per sample depth is shown in
Fig. 3. This figure shows that genome coverage completeness did not improve much after
10 million reads, with a maximum at 20 million reads, although the difference between 10
and 20 million reads was small (0.14%). We concluded that 10 million simulated reads were
sufficient to resolve the complexity of this specific dataset. To maintain the defined relative
abundances, and avoid this being skewed by the sub-sampling process, we used InSilicoSeq
to simulate a definitive dataset with 10 million reads per end, totalling 20 million reads.
Running the Metagenome Atlas (Kieser et al., 2020) QC module on these reads resulted in
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Figure 2 Annotation plot of bacterial reference genomes in validation dataset. Blue rectangles: inser-
tion sequences. Orange arrows: antimicrobial resistance genes. (A) Klebsiella pneumoniae chromosome
and three plasmids. (B) Acinetobacter baumannii chromosome and plasmid. (C) Enterococcus faecalis chro-
mosome and plasmid. (D) Mycobacterium tuberculosis chromosome. (E) Salmonella enterica chromosome

and plasmid. (F) Staphylococcus aureus chromosome. (G) Escherichia coli chromosome and plasmid.
Full-size Gal DOI: 10.7717/peerj.16695/fig-2

a total of 9,797,445 reads per end and 42,065 orphaned reads. The built-in MetaSPAdes
assembly step resulted in 1,513 contigs, of which 887 contigs were larger than 1 kbp with
an N50 of 82,245 and an L50 of 97. The total assembly length accumulated to 29,747,115
bp. Only contigs longer than 1 kbp length were used for the classification of MGEs and
ARGs. To detect IS elements in the simulated metagenome validation data, we ran the
ISEscan (Xie ¢ Tang, 2017) module of MetaMobilePicker on the 887 contigs longer than 1
kbp. ISEScan uses a prebuilt HMM database to identify insertion sequences. In total, 241
IS elements in 144 metagenomic contigs were identified compared to 417 IS elements in
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the reference genomes, resulting in a sensitivity of 0.585. In order to predict plasmids in
the metagenomic contigs, PlasClass as part of the MetaMobilePicker pipeline was applied
to contigs larger than 1 kbp, with a cut-off classification score of 0.8. PlasClass uses a deep
neural network and does not require a reference database during runtime. This resulted in
111 contigs predicted as plasmids (Fig. S1). Of these 111, 63 contigs were correctly predicted
as plasmids and 756 contigs were correctly predicted as chromosomal. Additionally, 48
and 17 contigs were falsely predicted as plasmid and chromosomal, respectively, resulting
in a precision of 0.57, recall of 0.79, and an F1 score of 0.66. Phages were predicted with
the MetaMobilePicker module for DeepVirFinder (Ren et al., 2020), which uses a logistic
regression model to predict phages and was tested as one of the best-performing phage
prediction tools for metagenomics in a recent study (Ho ef al., 2023). In order to measure
the performance of DeepVirFinder on our metagenomic assembly, we cross-referenced
the contigs predicted by DeepVirFinder with a classification score greater than 0.95, with
the contigs that originated from the five phages in the dataset. This analysis showed 27
predictions, of which five originated from the phages added to our community. These
five phage contigs were the full-length assemblies of these phages. Of the 22 contigs
not originating from our added phages, functional annotation using blastx (Carmacho

et al., 2009) showed 14 having a direct link to phage DNA, most likely originating from
prophages. Another four contigs were putatively linked to phages, containing hits not
exclusively associated with phages. The remaining four contigs showed no clear link to
phage DNA. The false positive contigs were notably shorter than the true positive phage
contigs. Of the 22 false positives, three were larger than 10 kbp, with a median of 2,568
bp, indicating limited room for full-length genes and genomic context on many of the
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Table 2 Precision, recall and F1-score for plasmid and phage classification. Phage scores were cor-
rected by discounting the false positive classifications containing genes directly related to phage DNA.

Uncorrected Corrected
Benchmark Precision Recall Fl1-score Precision Recall Fl1-score
Plasmids 0.59 0.79 0.66
Phages 0.185 1 0.312 0.555 1 0.713

Table 3 Sensitivity of annotation of insertion sequences (IS) and antimicrobial resistance genes
(ARGS). Sensitivity (ratio of true positive annotations to total number of IS and ARGs) was adjusted for
ARGs and IS in the reference genomes that did not have a corresponding metagenomics assembled contig
by removing those from the analysis.

Sensitivity (total) Sensitivity (assembled)
IS 0.585 0.932
ARGs 0.691 0.982

contigs. As we were unable to determine the number of prophage- or phage-related genes
not identified by DeepVirFinder, we did not take the 18 phage-related genes into account
when calculating the classification metrics. This resulted in a recall of 1.0, a precision of
0.555 and an F1-score of 0.713. To benchmark the performance of ARG annotation on our
validation set, we cross-referenced the metagenomic hits with the genomic hits (Fig. 4).
Of the 55 ARGs in the reference genomes, 38 were identified on the correct reference
chromosome or plasmid in the metagenome-assembled contigs, resulting in a sensitivity
of 0.697. For 16 of the remaining 17 genes, we identified the gene once, while they were
present in multiple copies in the reference genomes. These 16 hits comprise 10 unique
ARGs. The remaining hit was not found in the metagenomic contigs. Additionally, for the
genes for which more than one allele was present (tet(B) and aph(3”)-Ib), only one allele
was found. Only one sul2 gene was found more than once in the metagenomic assembly,
which was found twice compared to an expected copy number of three in the reference
genomes. The identified genes are displayed in Table S2. An overview of the classification
metrics for plasmids and phages can be found in Table 2. An overview of the annotation
metrics for IS and ARGs can be found in Table 3.

To find potential causes for the observed percentage of IS elements that were not present
in the contigs, for the low precision of the plasmid identification, and for the low number
of annotated ARGs, we further investigated read coverage, the influence of contig length
cutoffs and assembly of the different MGEs and ARGs.

Lacking read coverage explains a minority of missing MGEs in the
assembled metagenome

To investigate whether missing or lower read coverage of the simulated data could explain
the low precision observed for the identification of MGEs and mARGs in our metagenome
validation data, we mapped the simulated reads against the reference genomes and validated
the depth and breadth of coverage of the MGE annotated positions. This showed a varying
range of percentage of bases not covered between 0.001% (E. coli plasmid) and 3.67%
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Figure 4 Circular graph displaying the mapping of antibiotic resistance genes (ARGs) (inner lines) on
assembled contigs (light blue inner circle) and reference genomes (dark blue inner circle). Second cir-
cle displays sequence origin and classification. Purple: (true positive) chromosomes. Green: (true positive)
plasmids. Blue: (true positive) phages. Red: False positive plasmids. Yellow: false negative plasmids. Or-
ange lines in the outer ring denote the location of the ARGs. Outer lines denote ARGs present more than
once in the reference genomes.
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(E. faecalis plasmid), with an average of 0.48% missing bases with a standard deviation
of 1.16% (Table S3). This indicates that only a small portion of reference bases was not
covered by the simulated reads. None of these bases with missing coverage aligned to ARGs.
The E. faecalis chromosome contains a total of 24,900 bases not covered, possibly caused
by the low simulated abundance of this species. These are spread out over the genome,
and cause eight IS elements to have a contiguous region of bases not covered of 100 bp.
Additionally, two more IS elements have contiguous regions not covered larger than 50
bp (Table 54), both in the M. tuberculosis genome. The bases not covered predominantly
align to the chromosome sequences, with only one phage (containing a singular base
not covered), and two of the plasmids having bases not covered. These plasmids are the
aforementioned E. faecalis plasmid, and one E. coli plasmid having a singular base not
covered. In contrast, each of the seven chromosome sequences have bases not covered
ranging from 178 (0.006% of the genome) to 24,900 (0.96% of the genome) bases. Lacking
read coverage was therefore, at most, responsible for 3.67% of the overall recall for plasmids
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and for less than 0.01% of the overall recall for phages. Especially for IS in the E. faecalis
chromosome, the missing read coverage caused difficulty in assembly and subsequent
annotation. The IS elements containing regions not covered of 100 bp were not assembled
into contigs in both the per-species assembly and the complete assembly.

Smaller contig length cutoffs do not improve recall of MGEs

We investigated if the contig length cutoff of 1 kbp, as applied by MetaMobilePicker
could influence the recovery of MGEs. We analyzed the benchmark data set with a contig,
length cutoff of 500 bp instead of MetaMobilePicker’s default of 1 kbp, annotated them as
described previously and compared all outcomes. This resulted in 954 contigs (>500 bp),
instead of 887 (>1 kbp). Of the additional contigs ranging between 500 and 1,000 bp,
none contained an ARG. Furthermore, the contigs with a length between 500 and 1,000 bp
that were predicted as plasmids were predominantly of chromosomal origin (11 of 15
contigs), increasing the number of false positives more than the number of true positives
and lowering the precision for plasmid prediction from 0.57 (>1 kbp) to 0.54 (>500 bp).
Likewise, four contigs with a length between 0.5 and 1 kbp were predicted as phages but
were of chromosomal origin. Of these sequences, two were homologs of phage proteins,
and the other two had a potential association with phage DNA. Therefore, all four of these
sequences were subsequently not counted in the calculation of the phage metrics. This
suggested that lowering the sequence length threshold increased the number of false positive
predictions, which was not compensated by the increase of true positive predictions.

Complexity of metagenome assembly is not causal for assembly
performance

When split by species, the prediction of plasmids by PlasClass exhibited a false-positive
bias, especially for contigs from E. coli (Fig. 5). Of the 48 false positive plasmid predictions,
30 originated from the E. coli genome. The false positive predictions of phages did not
show this bias, and no false positive annotations were found for ARGs and IS elements. To
investigate if this overrepresentation was caused by a highly fragmented genome assembly,
we separated the simulated reads per genome and used each set of reads as input for
MetaMobilePicker separately. The resulting set of classified plasmid contigs was compared
to the reference genome sequences and the metagenomic contigs using metaQuast. The
classification scores for each species are displayed in Supplemental Table S5. Most notably,
the number of false positive plasmid predictions originating from the E. coli genome
for the single-species-only assembly was as high as in the metagenomic assembly with
30 false positive predictions. Comparing the false positive-predicted contigs from the
single-species-only assembly to the metagenomic assembly showed 29 identical pairs, and
one pair where the contig originating from the metagenomic assembly was 274 bp shorter
(total length = 1,622 bp) than the contig from the reference sequences. For the other species,
the single-species-only assembly also showed largely the same outcome as the metagenomic
assembly with regard to plasmid-predicted contigs, with the exception of S. enterica. In S.
enterica, the assembly of the plasmid improved notably in the single-species-only assembly
(metagenome: 16 mapping contigs, average length 6.3 kbp, single-species-only: four
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mapping contigs, average length 28.1 kbp). However, as the S. enterica plasmid represented
only one false positive prediction in the metagenome assembly, the S. enterica F1 score for
metagenome or single-species only differed because of the higher degree of fragmentation of
the metagenomic assembly (F 1,0 = 0.96, F Lsinglespecies = 0.8). Comparison of the wrongly
predicted sequence lengths shows similar results (bpera = 9.8 kbp, bpsingiespecies = 11.0 kbp).
Based on this, we note that the increased complexity of metagenomic assembly does not
substantially influence the recovery of MGEs in the benchmark dataset.

Assembly collapses identical insertion sequences and ARGs

To test if the low sensitivity of the identification of IS elements and ARGs was caused by
difficulty assembling these elements, we first tested if all IS elements in the reference
genomes were represented in the metagenomic contigs (Fig. S2). We mapped the
metagenomic contigs larger than 1 kbp to the reference genomes. This showed that

for 324/417 1S elements (77.70%) annotated in the reference genomes, a corresponding
metagenomic contig was mapped, whereas a matching metagenomic contig was missing
(less than 20% of the IS elements covered) for 93/417 IS elements present in the reference
genomes (22.30%). This includes the 10 IS elements not assembled due to missing read
coverage. Of the 324 reference IS elements with a corresponding metagenomic contig,
90 (27.80%) corresponded to 16 metagenomic contigs which mapped to multiple IS
elements in the reference genomes. These 16/417 metagenomic contigs are therefore likely
to represent assembly collapses. Furthermore, 16 IS elements annotated in the reference
genomes (4.90%) corresponded only partially (between 20% and 80% of the IS elements
covered) to a metagenomic contig. The remaining 221 IS elements in the reference genome
(69.70%) corresponded to a metagenomic contig uniquely mapped to that IS element. To
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contrast the detection sensitivity of ISEscan before and after metagenome assembly, we also
calculated the maximum achievable amount of IS elements detected in the metagenome-
assembled contigs. To this end, we discounted all IS elements that were lost or only partially
assembled during metagenome assembly. When taking only the IS elements into account
that were present in the metagenomic contigs, and subtracting the duplications of the
ambiguously mapped contigs, the maximal number of IS contigs ISEscan could potentially
identify was 248. ISEscan detected 231, thereby achieving a sensitivity of 93.15%. From
this, we conclude that collapse of IS elements during the assembly process was a major
contributor to the sub-optimal identification sensitivity of IS elements.

As mentioned above, 16 of the ARGs in the reference genomes were not identified with
the correct copy number. Further investigation of the metagenomic contigs mapped to the
reference genomes showed that 13 of these genes did not have a corresponding metagenomic
contig. The remaining three genes mapped partially to a contig but lacked annotation. This
suggested that similar to the IS, ARGs were collapsed during the metagenomic assembly
step.

DISCUSSION

In this study, we aimed to identify and annotate ARGs linked to MGEs or mobile ARGs
(mARGs) in metagenomic datasets. Using MetaMobilePicker, we were able to identify a
large part of the MGE present in our simulated dataset (shown by the high recall of the
classification and annotation of the MGEs) with an average true positive percentage of
91.3%, but also included many false positives (shown by the lower precision). Additionally,
many mARGs and IS elements were not identified in the correct copy numbers. Most of
the missed mARGs were lost in the process of metagenomic assembly, and there was no
corresponding contig to all mARG copies originally present in the reference genomes.

Several pipelines for MGE identification have been published recently, such as PathoFact
(de Nies et al., 2021), MobileElementFinder (Johansson et al., 2021), MGEFinder (Durrant
et al., 2020), VRProfile2 (Wang et al., 2022), MetaCompare (Oh et al., 2018) and hgtSeq
(Carpanzano et al., 2022). However, many of the existing tools (MobileElementFinder,
MGEFinder, VRprofile2 and hgtSeq) were developed for sequencing data from bacterial
isolates, often without being applicable to metagenomics (MobileElementFinder,
MGEFinder, hgtSeq). Other tools, such as VRprofile2, include a use-case for long-read
metagenomic datasets. All tools with the exception of MGEFinder and hgtseq, which use
read alignment to a reference genome, require assembled contigs and are therefore prone
to the same biases as described in this study. MetaMobilePicker provides a streamlined and
reproducible workflow allowing processing of multiple samples with the same parameters
and in parallel. This facilitates the possibility to compare the presence and absence of
specific mARGs between samples and can lead to new insight into the flow of genes
between different ecologies in a One Health context.

To quantify the performance of the tools included in MetaMobilePicker to identify
mARGs, we used a computationally simulated dataset based on reference genomes. The
composition of this dataset was an oversimplification of the complexity of real-world
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metagenomic samples with relevance to One Health, such as the human gut, livestock,
and dust, in which thousands of species can be identified in a single sample (Bindari et
al., 2021). Moreover, the species we selected are clinically relevant and present in many
data-driven studies and were therefore likely to have been used in the training of the
classification algorithms used to identify plasmids and phages. However, for validation
and benchmarking, high-quality reference genomes are necessary to ensure the algorithms
are validated on their ability to differentiate between the different origins of the sequence,
rather than their ability to discover novel plasmids. The in silico community contained only
seven bacterial species. This inflates the relative abundance of all of the genomes to levels
not realistic in a real-world sample. To partially counteract this, we simulated a shallowly
sequenced community with 10 million reads per end. Therefore, the biases uncovered in
this analysis are likely to be even more pronounced in real metagenomic sequencing. Most
notably, the resolution of within-sequence repeats (like IS elements) and between-sequence
repeats (like similar plasmids or bacterial strains) will be amplified when sequencing the
real-world complexity of bacterial communities (Olson et al., 2017).

On our validation data, plasmids were identified with high recall, but precision was
lacking, due to an overrepresentation of, mainly, E. coli chromosomal fragments in the
plasmid-prediction class. This overrepresentation might be due to a combination of factors.
The E. coli reference genome contains the highest number of IS. Since IS are difficult to
assemble, the E. coli genome was likely to be more fragmented than the other genomes.
This was in addition to the fact that performing metagenomic assembly on only the
subset of reads simulated from the E. coli genome resulted in an almost identical set of
contigs with the same MGE classification errors. The higher degree of fragmentation can
lead to a theoretical maximum of possible contiguity in the assembly. This, in turn, can
cause difficulty for the classification tool in distinguishing contigs that can be in both
a plasmid or chromosomal context, with limited context from flanking regions. The
identification of phage sequences showed many false positives and, consequently, a low
precision. We showed that this was primarily the result of prophage regions in the selected
reference genomes. Although DeepVirFinder was not developed with the goal of identifying
prophages, the high degree of fragmentation of the assembly caused the algorithm to classify
these short contigs as phages. Short contigs contain limited amounts of information for the
algorithm to determine that these contigs originated from bacterial reference sequences
rather than from phages. Even after correcting for these prophage sequences, the precision
of this classification remains low. This was caused by the much higher number of bacterial
contigs compared to phage contigs. All five phages were assembled into a single contig
each, which leaves little room for error when calculating prediction scores for 882 bacterial
contigs. Conversely, identification of IS elements was shown to be highly accurate when
only taking into account IS elements in the metagenomic assembly. However, comparing
the IS elements identified to the expected numbers from the reference genomes, we
observed that a large portion of IS elements was not found back in the final IS element
annotation. This appears to be an issue with the metagenomic assembly being unable to
differentiate between separate copies of the same IS element, rather than the ability of
ISEScan to identify IS elements. The repetitiveness of IS elements complicates assembly
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using short reads because it can be problematic to identify a suitable path through the de
Bruijn graph that connects the correct flanking regions of the IS elements. This can result
in the termination of the path at the IS element and the collapse of multiple IS elements
into one contig (Treangen ¢ Salzberg, 2011). As IS elements are often found surrounding
ARGs as part of transposable elements (Che et al., 2021), this process also complicates the
assembly and annotation of mARGs.

Metagenomic assembly is an essential step in many short-read metagenomic workflows.
Many tools exist to construct contigs from short metagenomic reads and extensive
comparisons have been conducted on these different algorithms (Sczyrba et al., 2017;
Zhang et al., 2023; Mendes et al., 2023). Although a number of benchmarks show the
challenges with metagenomic assembly (i.e., Mendes et al., 2023), many of these challenges
have not been described in the context of reconstruction of MGEs. De Bruijn graphs
constructed for metagenomic assembly are highly complex due to the vast genetic diversity
present in metagenomic samples. This is only increased in the reconstruction of MGEs,
most notably plasmids and IS elements. Many MGEs consist of highly repetitive regions
larger than the average k-mer used in the construction of the de Bruijn graph (Partridge et
al., 2018). This complicates not only the assembly of these regions but also the assembly of
genes shared between multiple replicons or genomes, as it is more difficult to reconstruct
the correct sequences. Commonly, the metagenomic assembly is an intermediate product
that is not used to generate the main results. The difference in the expected abundance of
these plasmids makes it difficult to group them together with their genome of origin. This
is also shown in our experiment, as many IS and plasmid sequences were not reconstructed
with the correct copy numbers. Binning these results would not assign these to the correct
genomes, either omitting several genomes, being put in a separate bin, or remaining
unbinned, similarly as shown by Maguire et al. (2020) for genomic islands and plasmids.

In recent years, long-read sequencing techniques have proven useful in the
reconstruction of MGE:s like plasmids and IS elements (Berbers et al., 2020). Additionally,
long-read metagenomics is an increasingly viable technique to capture the diversity of
bacterial communities. Taxonomic profiling as well as the reconstruction of Metagenomic
Assembled Genomes (MAGs) using long read techniques showed good results (Albertsen,
2023; Gounot et al., 2022) that can compete with short-read sequencing techniques.
However, plasmids remain difficult to assemble even using long read metagenomic
techniques, and high strain variation or bacterial species in low abundance in samples
still provides challenges (Albertsen, 2023; Bouras et al., 2023). Using a hybrid solution
combining the coverage depth of short reads and the read length of long reads can be
a solution feasible for plasmid assembly, like in whole genome sequencing experiments,
as well as techniques like Hi-C (Lieberman-Aiden et al., 2009) that can help distinguish
between similar plasmids in different hosts (Cuscd et al., 2022).

CONCLUSIONS

In this study, we have assessed the role of metagenomic assembly in the identification of
mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs). We conclude
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that the largest bottleneck in correctly identifying MGEs in a simulated metagenomic
sample is the quality of the metagenomic assembly and, to a lesser extent annotation tools
and sequence coverage.
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