25 research outputs found

    A Conceptual Analysis

    Get PDF
    Johne’s disease (JD) is a chronic, production-limiting disease of ruminants. Control programs aiming to minimize the effects of the disease on the dairy industry have been launched in many countries, including Canada. Those programs commonly focus on strict hygiene and management improvement, often combined with various testing methods. Concurrently, organic dairy farming has been increasing in popularity. Because organic farming promotes traditional management practices, it has been proposed that organic dairy production regulations might interfere with implementation of JD control strategies. However, it is currently unclear how organic farming would change the risk for JD control. This review presents a brief introduction to organic dairy farming in Canada, JD, and the Canadian JD control programs. Subsequently, organic practices are described and hypotheses of their effects on JD transmission are developed. Empirical research is needed, not only to provide scientific evidence for organic producers, but also for smaller conventional farms employing organic-like management practices

    Very slow creep tests on rock samples

    No full text
    International audienceTwelve years ago, creep tests at very low deviatoric stress were performed on an Etrez salt sample in the Varangéville Mine. Recently, a new testing campaign was performed on various salt samples to gain further insight on salt behavior. Creep tests are performed under a 0.1 MPa uniaxial loading on rock-salt samples from the Varangéville and Avery Island Mines and under a 0.24 MPa uniaxial loading on a crushed-salt sample. To minimize the effects of temperature variations, testing devices were placed in an underground mine room, where temperature fluctuations are of the order of one-hundredth of a degree Celsius. The me-chanical loading is provided by dead weights. The deformations were measured through special displacement sensors with a resolution of 1/80 µm. A typical steady-state strain rate reached after 6 months is -2.4 × 10-12 s-1. The influence of air hygrometry, which is approximately 74%RH in the mine, is smaller than expected

    Advanced Gas Storage Concepts: Technologies for the Future

    Full text link
    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing

    Impacts of local human activities on the Antarctic environment

    Get PDF
    We review the scientific literature, especially from the past decade, on the impacts of human activities on the Antarctic environment. A range of impacts has been identified at a variety of spatial and temporal scales. Chemical contamination and sewage disposal on the continent have been found to be long-lived. Contemporary sewage management practices at many coastal stations are insufficient to prevent local contamination but no introduction of non-indigenous organisms through this route has yet been demonstrated. Human activities, particularly construction and transport, have led to disturbances of flora and fauna. A small number of non-indigenous plant and animal species has become established, mostly on the northern Antarctic Peninsula and southern archipelagos of the Scotia Arc. There is little indication of recovery of overexploited fish stocks, and ramifications of fishing activity oil bycatch species and the ecosystem could also be far-reaching. The Antarctic Treaty System and its instruments, in particular the Convention for the Conservation of Antarctic Marine Living Resources and the Environmental Protocol, provide a framework within which management of human activities take place. In the face of the continuing expansion of human activities in Antarctica, a more effective implementation of a wide range of measures is essential, in order to ensure comprehensive protection of the Antarctic environment, including its intrinsic, wilderness and scientific values which remains a fundamental principle of the Antarctic Treaty System. These measures include effective environmental impact assessments, long-term monitoring, mitigation measures for non-indigenous species, ecosystem-based management of living resources, and increased regulation of National Antarctic Programmes and tourism activities

    Salt Creep: Transition Between the Low and High Stress Domains

    Get PDF
    In 2014–2016, creep tests were performed in a dead-end drift of the Altaussee mine, where temperature and relative humidity experience very small fluctuations. These tests, which were several months long, proved that the creep rate of a natural salt sample is much faster in the 0.2–1 MPa deviatoric stress range than the creep rate extrapolated from standard laboratory creep tests performed in the 5–20 MPa range. In addition, the quasi-steady strain rate is a linear function of stress, and it is faster when grain size is smaller. These findings were consistent with microphysical models of pressure solution creep (rather than dislocation creep, which is the governing creep mechanism at high stresses). A gap in experimental data remained in the 1–5 MPa range, calling for a follow-up experimental program. In 2016–2019, three multi-stage creep tests were performed on salt samples from Hauterives (France), Avery Island (Louisiana, USA), and Gorleben (Germany), which had been tested in the 0.2–1 MPa range during the 2014–2016 campaign. Loads of 1.5, 3, and 4.5 MPa were applied successively on each sample for 8 months. Steady state was not reached at the end of each 8-month stage. However, tests results suggest that, in the 0.2–3 MPa range, the relationship between the strain rate and the applied stress is linear, a characteristic feature of pressure solution. For these three samples, the relationship between strain rate and deviatoric stress departs from linearity when the deviator is larger than approximately 3–4.5 MPa, pointing to a transition to dislocation creep at higher deviatoric levels

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore