43 research outputs found

    Designing a fully compensated half-metallic ferrimagnet

    Get PDF
    Recent experimental work on Mn2RuxGa demonstrates its potential as a compensated ferrimagnetic half-metal (CFHM). Here we present a set of high-throughput ab initio density functional theory calculations and detailed experimental characterisation, that enable us to correctly describe the nominal Mn2RuxGa thin films, in particular with regard to site-disorder and defects. We then construct models that accurately capture all the key features of the Mn-Ru-Ga system, including magnetic compensation and the spin gap at the Fermi level. We find that electronic doping is neccessary, which is achieved with a Mn/Ga ratio smaller than two. Our study shows how composition and substrate-induced biaxial strain can be combined to design a ferrimagnetic half-metal with a compensation point close to room temperature

    Syntheses, characterization, density functional theory calculations, and activity of tridentate SNS zinc pincer complexes based on bis-imidazole or bis-triazole precursors

    Get PDF
    A series of tridentate pincer ligands, each possessing two sulfur- and one nitrogen-donor functionalities (SNS), based on bis-imidazole or bis-triazole salts were metallated with ZnCl2 to give new tridentate SNS pincer zinc(II) complexes [(SNS)ZnCl]+. The zinc complexes serve as models for the zinc active site in liver alcohol dehydrogenase (LADH) and were characterized with single crystal X-ray diffraction, 1H, 13C, and HSQC NMR spectroscopies, electrospray mass spectrometry, and elemental analysis. The zinc complexes feature SNS donor atoms and pseudotetrahedral geometry about the zinc center, as is seen for liver alcohol dehydrogenase. The bond lengths and bond angles of the zinc complexes correlate well to those in horse LADH. The SNS ligand precursors were characterized with 1H, 13C, and HSQC NMR spectroscopies, elemental analysis, and cyclic voltammetry, and were found to be redox active. Gaussian calculations were performed and agree with the experimentally observed oxidation potentials for the pincer ligand precursors. The zinc complexes were screened for the reduction of electron-poor aldehydes in the presence of a hydrogen donor, 1-benzyl-1,4-dihydronicotinamide (BNAH), and it was determined that they enhance the reduction of electron-poor aldehydes. The SNS zinc pincer complexes with bis-triazole ligand precursors exhibit higher activity for the reduction of 4-nitrobenzaldehyde than do SNS zinc pincer complexes with bis-imidazole ligand precursors. Quantitative stoichiometric conversion was seen for the reduction of pyridine-2-carboxaldehyde via SNS zinc pincer complexes with either bis-imidazole or bis-triazole ligand precursors

    Synthesis, Characterization, Density Functional Theory Calculations, and Activity of a Thione-Containing NNN-Zinc Pincer Complex Based on a Bis-triazole Precursor

    Get PDF
    A novel ambidentate tridentate pincer ligand based on a bis-triazole precursor, was prepared, characterized, and metallated with ZnCl2 to give a new tridentate NNN-bound pincer zinc(II) pincer complex: dichloro(η3-N,N,N)-[2,6-bis(3-[N-butyl]triazol-5-thione-1-yl)]pyridinezinc(II), [(NNN)ZnCl2]. This compound has pseudo-trigonal bipyramidal geometry at the zinc(II) center and exhibits metal–ligand binding that contrasts with our previously reported SNS-bound systems despite the availability of these same donor atoms in the current ligand set. The zinc complex was characterized with single crystal X-ray diffraction, 1H, 13C, and HSQC NMR spectroscopies, and electrospray mass spectrometry. The ligand precursors were characterized with 1H, 13C, and HSQC NMR spectroscopies, and cyclic voltammetry, and were found to be redox active. Density functional calculations, which investigate and support the nature of the NNN binding suggest that the experimentally observed oxidation and reduction waves are not the result of a simple one-electron process. The zinc complex was screened for the reduction of electron-poor aldehydes in the presence of a hydrogen donor, 1-benzyl-1,4-dihydronicotinamide (BNAH), and it was determined that they enhance the reduction of 4-nitrobenzaldehyde. Quantitative stoichiometric conversion was seen for the reduction of pyridine-2-carboxaldehyde

    The interplay between extrinsic and intrinsic factors in determining migration decisions in brown trout (Salmo trutta): An experimental study

    Get PDF
    Many species are capable of facultative migration, but the relative roles of extrinsic versus intrinsic factors in generating diverse migratory tactics remain unclear. Here we explore the proximate drivers of facultative migration in brown trout in an experimental laboratory setting. The effects of reduced food, as a putative environmental cue, were examined in two populations: one that exhibits high rates of anadromy (sea-migration) in nature, and one that does not exhibit anadromy in nature. Juveniles derived from wild-caught parents were reared for two years under four environmental treatments: low food in years 1 and 2 (Low-Low); high food in years 1 and 2 (High-High), low food in year 1 and high in year 2 (Low-High), and vice versa (High-Low). Food restriction had a significant effect on migratory tactics, with the frequency of smolts (juveniles choosing migration) highest in the Low-Low treatment in both populations. No individuals became smolts in the High-High treatment, and intermediate smolting rates were observed in the Low-High and High-Low treatments. Higher overall smolting rates in the naturally anadromous population suggested an inherited component to anadromy/migration decisions, but both populations showed variability in migratory tactics. Importantly, some fish from the naturally non-anadromous population became smolts in the experiment, implying the capacity for migration was lying ‘dormant’, but they exhibited lower hypo-osmoregulatory function than smolts from the naturally anadromous population. Tactic frequencies in the naturally anadromous population were more affected by food in the 2nd year, while food in the 1st year appeared more important for the naturally non-anadromous population. Migratory tactics were also related to sex, but underpinned in both sexes by growth in key periods, size and energetic state. Collectively these results reveal how migration decisions are shaped by a complex interplay between extrinsic and intrinsic factors, informing our ability to predict how facultatively migratory populations will respond to environmental change

    Synthesis, Characterization, and Computational Study of Three-Coordinate SNS Copper(I) Complexes Based on Bis-Thione Ligand Precursors

    Get PDF
    A series of tridentate pincer ligands, each possessing two sulfur and one nitrogen donor (SNS), based on bis-imidazolyl or bis-triazolyl salts were metallated with CuCl2 to give new tridentate SNS pincer copper(I) complexes [(SNS)Cu]+. These orange complexes exhibit a three-coordinate pseudo-trigonal-planar geometry in copper. During the formation of these copper(I) complexes, disproportionation is observed as the copper(II) salt precursor is converted into the Cu(I) [(SNS)Cu]+ cation and the [CuCl4]2– counteranion. The [(SNS)Cu]+ complexes were characterized with single crystal X-ray diffraction, electrospray mass spectrometry, EPR spectroscopy, attenuated total reflectance infrared spectroscopy, UV–Vis spectroscopy, cyclic voltammetry, and elemental analysis. The EPR spectra are consistent with anisotropic Cu(II) signals with four hyperfine splittings in the lower-field region (g||) and g values consistent with the presence of the tetrachlorocuprate. Various electronic transitions are apparent in the UV–Vis spectra of the complexes and originate in the copper-containing cations and anions. Density functional calculations support the nature of the SNS binding, allowing assignment of a number of features present in the UV–Vis and IR spectra and cyclic voltammograms of these complexes

    Syntheses and characterization of three-and five-coordinate copper(II) complexes based on SNS pincer ligand precursors

    Get PDF
    A series of tridentate pincer ligands, each possessing two sulfur- and one nitrogen-donor functionalities (SNS), based on a bis-imidazolyl precursor were metallated with CuCl2 to give new tridentate SNS pincer copper(II) complexes [(SNS)CuCl2]. These purple complexes exhibit a five-coordinate pseudo-square pyramidal geometry at the copper center. The [(SNS)CuCl2] complexes were characterized with single crystal X-ray diffraction, electrospray mass spectrometry, EPR spectroscopy, attenuated total reflectance infrared spectroscopy, UV–Vis spectroscopy, cyclic voltammetry, and elemental analysis. The EPR spectra are consistent with typical anisotropic Cu(II) signals with four hyperfine splittings in the lower-field region (g||). Various electronic transitions are apparent in the UV–Vis spectra of the complexes and originate from d-to-d transitions or various charge transfer transitions. We preformed computational studies to understand the influence that structural constraints internal to our tridentate SNS ligand precursors have on the oxidation state of the resulting bound copper complex. We have determined that a d9 copper(II) metal center is better situated than a d10 copper(I) center to bind our tridentate SNS ligand set when it does not contain an internal CH2 group. Without this methylene linker, the SNS ligand forces the N and S atoms into a T-shaped arrangement about the metal center

    Food and temperature stressors have opposing effects in determining flexible migration decisions in brown trout (Salmo trutta)

    Get PDF
    With rapid global change, organisms in natural systems are exposed to a multitude of stressors that likely co‐occur, with uncertain impacts. We explored individual and cumulative effects of co‐occurring environmental stressors on the striking, yet poorly understood, phenomenon of facultative migration. We reared offspring of a brown trout population that naturally demonstrates facultative anadromy (sea migration), under different environmental stressor treatments and measured life history responses in terms of migratory tactics and freshwater maturation rates. Juvenile fish were exposed to reduced food availability, temperatures elevated to 1.8°C above natural conditions or both treatments in combination over 18 months of experimental tank rearing. When considered in isolation, reduced food had negative effects on the size, mass and condition of fish across the experiment. We detected variable effects of warm temperatures (negative effects on size and mass, but positive effect on lipids). When combined with food restriction, temperature effects on these traits were less pronounced, implying antagonistic stressor effects on morphological traits. Stressors combined additively, but had opposing effects on life history tactics: migration increased and maturation rates decreased under low food conditions, whereas the opposite occurred in the warm temperature treatment. Not all fish had expressed maturation or migration tactics by the end of the study, and the frequency of these ‘unassigned’ fish was higher in food deprivation treatments, but lower in warm treatments. Fish showing migration tactics were smaller and in poorer condition than fish showing maturation tactics, but were similar in size to unassigned fish. We further detected effects of food restriction on hypo‐osmoregulatory function of migrants that may influence the fitness benefits of the migratory tactic at sea. We also highlight that responses to multiple stressors may vary depending on the response considered. Collectively, our results indicate contrasting effects of environmental stressors on life history trajectories in a facultatively migratory species

    ATM Regulates Differentiation of Myofibroblastic Cancer-Associated Fibroblasts and Can Be Targeted to Overcome Immunotherapy Resistance

    Get PDF
    Myofibroblastic cancer-associated fibroblast (myoCAF)-rich tumors generally contain few T cells and respond poorly to immune-checkpoint blockade. Although myoCAFs are associated with poor outcome in most solid tumors, the molecular mechanisms regulating myoCAF accumulation remain unclear, limiting the potential for therapeutic intervention. Here, we identify ataxia-telangiectasia mutated (ATM) as a central regulator of the myoCAF phenotype. Differentiating myofibroblasts in vitro and myoCAFs cultured ex vivo display activated ATM signaling, and targeting ATM genetically or pharmacologically could suppress and reverse differentiation. ATM activation was regulated by the reactive oxygen species-producing enzyme NOX4, both through DNA damage and increased oxidative stress. Targeting fibroblast ATM in vivo suppressed myoCAF-rich tumor growth, promoted intratumoral CD8 T-cell infiltration, and potentiated the response to anti-PD-1 blockade and antitumor vaccination. This work identifies a novel pathway regulating myoCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance.SignificanceATM signaling supports the differentiation of myoCAFs to suppress T-cell infiltration and antitumor immunity, supporting the potential clinical use of ATM inhibitors in combination with checkpoint inhibition in myoCAF-rich, immune-cold tumors

    INCITE: A randomised trial comparing constraint induced movement therapy and bimanual training in children with congenital hemiplegia

    Get PDF
    Background: Congenital hemiplegia is the most common form of cerebral palsy (CP) accounting for 1 in 1300 live births. These children have limitations in capacity to use the impaired upper limb and bimanual coordination deficits which impact on daily activities and participation in home, school and community life. There are currently two diverse intensive therapy approaches. Traditional therapy has adopted a bimanual approach (BIM training) and recently, constraint induced movement therapy (CIMT) has emerged as a promising unimanual approach. Uncertainty remains about the efficacy of these interventions and characteristics of best responders. This study aims to compare the efficacy of CIMT to BIM training to improve outcomes across the ICF for school children with congenital hemiplegia

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore