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Abstract 

With rapid global change, organisms in natural systems are exposed to a multitude of stressors 

that likely co-occur, with uncertain impacts. We explored individual and cumulative effects of 

co-occurring environmental stressors on the striking, yet poorly understood, phenomenon of 30 

facultative migration. We reared offspring of a brown trout population that naturally 

demonstrates facultative anadromy (sea-migration), under different environmental stressor 

treatments and measured life-history responses in terms of migratory tactics and freshwater 

maturation rates. Juvenile fish were exposed to reduced food availability, temperatures elevated 

to 1.8 °C above natural conditions, or both treatments in combination over 18 months of 35 

experimental tank rearing. When considered in isolation, reduced food had negative effects on 

the size, mass and condition of fish across the experiment. We detected variable effects of 

warm temperatures (negative effects on size and mass, but positive effect on lipids). When 

combined with food restriction, temperature effects on these traits were less pronounced, 

implying antagonistic stressor effects on morphological traits. Stressors combined additively, 40 

but had opposing effects on life-history tactics: migration increased and maturation rates 

decreased under low food conditions, whereas the opposite occurred in the warm temperature 

treatment. Not all fish had expressed maturation or migration tactics by the end of the study, 

and the frequency of these “unassigned” fish was higher in food deprivation treatments, but 

lower in warm treatments. Fish showing migration tactics were smaller and in poorer condition 45 

than fish showing maturation tactics, but were similar in size to unassigned fish. We further 

detected effects of food restriction on hypo-osmoregulatory function of migrants that may 

influence the fitness benefits of the migratory tactic at sea. We also highlight that responses to 

multiple stressors may vary depending on the response considered. Collectively, our results 

indicate contrasting effects of environmental stressors on life-history trajectories in a 50 

facultatively migratory species.   
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Introduction 

Against the backdrop of rapid global change, organisms are increasingly exposed to a variety 

of pressures stemming from anthropogenic activities (Sanderson et al. 2002). Temperature 

increases, habitat degradation, pollution, exploitation, and land use changes are examples of 55 

pressures, or “stressors”, that contribute to recent patterns of population and biodiversity 

decline, and altered ecosystem functioning (Walther et al. 2002; Parmesan 2006). While much 

research has addressed the effects of individual stressors, in practice, stressors rarely occur in 

isolation, and it is imperative we also understand the combined effects of multiple stressors 

(Breitburg et al. 1998) in order to better forecast and manage species’ responses to global 60 

change (Côté et al. 2016). This is not necessarily straightforward however, with co-occurring 

stressors – defined here as biotic or abiotic changes beyond the range typically experienced 

under natural conditions (Breitburg et al. 1999; Crain et al. 2008) – potentially acting 

additively, synergistically, or antagonistically (Folt et al. 1999; Crain et al. 2008).  

Although a growing body of research is now expanding beyond single-stressor approaches, 65 

uncertainty still surrounds the net effects of co-occurring stressors, and empirical studies have 

provided mixed results. Meta-analyses suggest that synergistic effects dominate in the marine 

sphere (Crain et al. 2008; Harvey et al. 2013; Przeslawski et al. 2015), but antagonistic effects 

(Byrne and Przeslawski 2013) and additive effects (O’Gorman et al. 2012) have also been 

reported. In freshwater systems, which are particularly sensitive to multi-faceted change 70 

(Ormerod et al. 2010), antagonistic effects of multiple stressors are most prevalent (Jackson et 

al. 2016). 

The effects of stressors may be highly context-specific. For example, increased temperature is 

a stressor likely to be experienced almost universally across natural systems, yet the impacts 

of warming at the individual level can range from positive to negative depending on whether 75 

optimum performance temperatures are exceeded (Huey and Stevenson 1979; Sinclair et al. 

2016). Moreover, stressor effects can differ depending on the trait/response, or the level of 

organisation considered e.g. warming can increase individual metabolic and feeding rates, but 

may reduce survival, cause population/species extinctions (Petchey et al. 1999; Fussmann et 

al. 2014) or alter community stability due to long-term changes in species’ interaction strengths 80 

(Rall et al. 2010). Predicting stressor effects at multiple levels is likely to be additionally 

challenging when more than one stressor is involved (Galic et al. 2018).  
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An understudied aspect of multiple stressors is how effects at the individual level shape life-

history trajectories, which in turn may mediate how stressors scale up to influence higher-level 

(e.g. population, community, ecosystem) processes. One fundamental decision that many 85 

animals face, which is associated with a broad range of life-history and eco-evolutionary 

consequences, is whether to migrate or not. Facultative migration – the phenomenon whereby 

individuals retain the capacity to adopt either a migratory or a non-migratory life-style – is 

common across many animal taxa (Lack 1943; Swingland and Greenwood 1984; Lundberg 

1987; Kaitala et al. 1993; Chapman et al. 2011), with well documented examples in birds 90 

(Berthold and Querner 1982; Lundberg 1988; Pulido et al. 1996; Newton 2008), ungulates 

(Ball et al. 2001; Cagnacci et al. 2011; Hebblewhite and Merrill 2011), zooplankton (Hansson 

and Hylander 2009), and fishes (Northcote and Ward 1985; Jonsson 1985; Chapman et al. 

2012; Dodson et al. 2013). Environmental stresses such as limited food or inclement 

temperatures often appear to play a role in driving individuals to migrate (Chapman et al. 95 

2012). Alternative migratory phenotypes have often been considered within the framework of 

the “environmentally-cued threshold model” (Tomkins and Hazel 2007; Piche et al. 2008; 

Pulido 2011; Buoro et al. 2012), in which tactic frequencies are controlled by the relationship 

between an environmentally-sensitive status trait (e.g. physiological condition or energy status) 

and an inherited threshold, assumed to be genetically variable. If the status trait exceeds the 100 

threshold, or “switch point”, residency occurs; if not, migratory tactics are adopted. 

Environmental factors are likely to be important drivers of migratory tactics at both proximate 

and ultimate levels, yet few studies have addressed how facultatively migratory species respond 

to pressures arising from environmental change (Doswald et al. 2009), either in isolation, or 

when stressors act in combination. 105 

Salmonine fishes (trouts, salmons, and charrs) represent an excellent group to study multiple 

stressor effects (McGinnity et al. 2009; de Eyto et al. 2016). In facilitating obligate freshwater 

spawning, salmonines display a suite of migratory phenotypes, encompassing residents that 

remain in natal streams their entire lives, individuals that migrate to larger rivers or lakes 

(potomodromy), and others still that undertake a marine migration before returning to fresh 110 

water to spawn (anadromy) (Klemetsen et al. 2003; Dodson et al. 2013; Ferguson et al. 2019; 

Nevoux et al. 2019). The migration versus residency decision represents a trade-off, where the 

benefits of migration (avoiding abiotic or biotic stresses in the natal stream, exploiting better 

food resources in the new environment, which translate into higher growth and thus higher 

fecundity or mating success) must be balanced against the costs (energetic demands of 115 
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migration, physiological stress of changing environments/habitats, a potentially increased risk 

of predation) (Kendall et al. 2014). Environmental conditions in natal fresh waters can interact 

with intrinsic physiological traits to determine alternative migratory tactics, e.g. if food 

resources cannot support growth or metabolism in early life, the resulting energetic deficit may 

promote migration. Food resources have been shown to directly (Davidsen et al. 2014; Jones 120 

et al. 2015; Archer et al. 2019) and indirectly influence migration (Olsson et al. 2006; 

Wysujack et al. 2009; O’Neal and Stanford 2011). Similarly, because temperature profoundly 

influences biological processes (Gillooly et al. 2001; Dell et al. 2011), temperature effects on 

physiological status traits/energetic balance likely make it an important environmental 

determinant of migratory decisions. Higher temperatures have been associated with increased 125 

anadromy in lieu of maturation in steelhead trout Oncorhynchus mykiss (Sloat and Reeves 

2014), but under experimental conditions of constant food supply. Warming is likely to be 

accompanied by reductions in freshwater macroinvertebrate abundance (Durance and Ormerod 

2007), with potentially synergistic effects if elevated metabolic demands induced by warming 

are compounded by low food availability. 130 

Environmental stressors may also act to affect the performance of individuals once a migratory 

decision has been made. Although migration potentially confers many benefits on individuals, 

the ensuing costs mean that environmental conditions experienced prior to out-migration might 

further affect the future success of migrants, both during migration and in the subsequent 

environment (river, lake, or sea) (McCormick et al. 2009a). Sea-migration in particular requires 135 

substantial physiological remodelling for transitioning to salt water, and the changes in 

physiological regulation of ions, colouration, and body shape (collectively termed “smolting”, 

(Tanguy et al. 1994)) necessitate an expensive investment by individuals that is likely to begin 

long before the migration is initiated, and hence may be affected by environmental stressors. 

Empirical evidence suggests that once the migratory decision is made, migrants divert 140 

resources towards accelerated growth (Metcalfe 1998). Smolt survival at sea is positively 

related to size (Ward and Slaney 1988) and, as such, favourable freshwater conditions may 

produce larger and more successful migrants, with associated fitness benefits altering the 

migration-residency trade off.  

Here we present the results of an experimental laboratory study of physiology, migration and 145 

maturation of brown trout, using the F1 progeny of wild-caught parents from a population that 

exhibits facultative migration in nature. We aimed to explore if, and how, life-history decisions 

are shaped by individual and interactive effects of two putative extrinsic environmental 
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stressors. Specifically, we aimed to: (i) determine the effects of food restriction and elevated 

temperature on a range of physiological traits (size, mass, condition, lipids); (ii) assess the life-150 

history consequences, in terms of migratory tactics and maturation decisions, of these stressors 

(both in isolation and combined); and (iii) explore how environmental stressors affect future 

migratory performance. We expected that food reduction and elevated temperature would each 

increase the prevalence of migratory tactics, with potentially synergistic effects when the 

stressors were combined. We also expected stressors to negatively affect future migratory 155 

capacity of anadromous individuals by reducing potential for fast growth (and thus reducing 

smolt viability), or by inhibiting osmoregulation in salt water.  

Materials and Methods 

Study population and fish rearing 

Brown trout brood stock from a wild population were caught by seine-netting in November 160 

2015 in Tawnyard Lough, an upland lake of 56 ha in the Erriff catchment (National Salmonid 

Index Catchment) in the west of Ireland (53° 37´ 0.00" N: 09° 40´ 17.10" W). Tawnyard Lough 

is fed primarily by the Glendavoch river, and a number of smaller tributaries (Figure S1). 

Brown trout primarily spawn within the Glendavoch River and move downstream as fry or parr 

to Tawnyard Lough, a distance of a few hundred metres to kilometres, depending on where 165 

spawning occurred. Tawnyard Lough produces a large run of out-migrating anadromous 

juveniles (smolts), with annual estimates of 500 to 3000 smolts enumerated at the outflow of 

the Lough over the last 30 years (Gargan et al. 2016). An unknown proportion of the population 

remain within the lake, and undergo several years of freshwater growth before returning to the 

natal stream to spawn. While the migration phenotypes of the brood stock could not be 170 

determined unambiguously in this study (because external signs of prior migration are not 

completely unambiguous in this system), we assumed that the frequencies of 

migratory/resident phenotypes among our brood stock were broadly representative of naturally 

occurring frequencies, given that brood stock were obtained haphazardly. Moreover, our goals 

in this study were not to test explicitly for inherited variation in migration tactics, but rather to 175 

explore proximate (environmental) drivers. The caveat must be kept in mind, however, that 

any environmental effects we document are contingent on the genotypic composition of our 

sample. 

Each ripe female (n = 7) was stripped of eggs, which were then split into two batches, and each 

batch was fertilised by the milt of a single male (n = 10) (i.e. each female was mated to two 180 
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males, creating fourteen full-sib families). Due to constraints in obtaining brood stock and 

variation in the timing of when females were ripe to be stripped, eggs were fertilised on three 

occasions in November and December 2015 (see Table S1 fertilisation/ brood stock crossing 

details). Fertilised eggs from each crossing were incubated separately in standard Heath trays 

in the nearby Burrishoole hatchery. Prior to exogenous feeding, fry from the late 185 

November/early December fertilisations (hereafter “Nov-Dec fertilisation group”) were 

transferred to a rearing facility at University College Cork (Aquaculture and Fisheries 

Development Centre). Here, families were mixed, and fry were held in a 100 L growth tank on 

a recirculating aquaculture system (RAS), maintained by a conditioning unit at a seasonally 

varying temperature regime approximating that of the catchment from which the brood stock 190 

were obtained (i.e. the annual cycle in mean weekly temperatures in the nearby Burrishoole 

catchment for the preceding three years, see Figure S2. Due to initial logistical constraints in 

achieving low temperatures, temperatures in winter 2015 were higher than the mean ambient 

temperatures (Figure S2). Fry were fed ad libitum with commercially available trout pellets 

(Skretting Ltd., Norway) to facilitate their transition to exogenous feeding (by June 2016), and 195 

were then fed ad libitum until the experimental phase began. Fish experienced a constant 

photoperiod (12:12 hours of light: dark) during this initial rearing phase. Due to logistical 

constraints, an additional group of fry from the first fertilisation event (termed “Nov 

fertilisation group”) was maintained at a natural temperature regime in a flow-through tank at 

the Burrishoole hatchery facility, where they transitioned to exogenous feeding via ad libitum 200 

feeding with the same trout pellets. Fry from the Nov group were transported to the UCC 

rearing facility in May 2016, and reared in a 100 L tank, in the same RAS and under the same 

conditions as the Nov-Dec fertilisation group. Due to size differences (Nov group fish were 

larger than Nov-Dec group fish by the beginning of the experiment) the two fertilisation groups 

were reared in separate tanks for the duration of the study to prevent emergence of feeding 205 

hierarchies. 

Experimental treatments 

The study and all associated procedures were carried out with ethical approval from Health 

Products Regulatory Authority (HPRA) Ireland, under HPRA project license AE19130/P034, 

and individual licenses AE19130/1087, AE19130/I200, AE19130/I201 and AE19130/I202). 210 

The experimental phase ran for an 18-month period from December 2016 to June 2018 with 

all fish humanely euthanized at the end of the experiment. 
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Juvenile brown trout were randomly allocated across eight 520L tanks at the end of November 

2016 (initial n = 140 per tank for Nov-Dec group, and n = 35 per tank (filled to 203L) for Nov 

group), each assigned one of two temperature treatments and one of two food treatments. Water 215 

flowed continually through tanks to prevent the build-up of waste, returned to a central sump 

via mechanical filtration, and was treated with protein skimming, biofiltration and UV 

skimming. Weekly monitoring of water quality indicated that levels of pH, nitrate, nitrite, and 

ammonia were well within acceptable ranges for fish health. Mortality during the experimental 

phase was minimal (4%). To avoid compromising water quality with excessive biomass, fish 220 

were culled haphazardly (n = 229 in total across all treatments) over the two years of tank 

rearing, with equal densities in terms of fish numbers (fish per L) maintained across treatment 

groups and equal biomass densities (g per L) maintained between fertilisation groups. Fish 

culled in this manner were not included in the analyses. 

To explore the individual and interactive effects of food restriction and temperature in 225 

determining migratory tactics, food and temperature treatments were applied in isolation and 

in combination for both fertilisation groups for the duration of the experimental phase. The two 

food treatments were: (i) high food treatment: fish fed recommended daily rations for optimal 

growth calculated as a percentage of their body mass and adjusted for seasonally-changing 

temperatures (Skretting Ltd., Norway); and (ii) low food treatment: fish fed 25% of optimal 230 

daily rations. A value of 25% of optimal daily rations was chosen for the low food treatment 

because similar restrictions have previously been shown to reduce the frequency of residency 

in adfluvial brown trout (Wysujack et al. 2009). The two temperature regimes were achieved 

by passing water through one of two conditioning units that maintained two temperature 

treatments as follows : (i) cool temperature treatment: temperatures matching the natural, 235 

seasonally-varying, temperature regime for the Erriff catchment; and (ii) warm temperature 

treatment: temperatures elevated by 1.8 °C ± 0.55 (SD) above the cool temperature treatment. 

The cool treatment ranged from 5.9 - 16.4 °C (mean temperature = 10.9 °C ± 3.2 SD) and the 

warm treatment ranged from 7.5 - 18.2 °C (mean temperature = 12.7 °C ± 3.2 SD). An increase 

of 1.8 °C for the warm temperature treatment was chosen because this is in line with increases 240 

of 1 - 3 °C projected to occur under climate change scenarios (IPCC 2014). While both 

treatments remained within sub-lethal ranges for brown trout (Forseth et al. 2009; Jonsson and 

Jonsson 2009), the warm temperature treatment was considered “stressful” because the 

maximum temperatures in the warm treatment approached upper thermal growth limits for 

brown trout (18.7 °C). Optimal temperatures for growth have been estimated to be between 245 
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13.1 – 13.9 °C (Elliott and Hurley 2000; Hari et al. 2006; Elliott and Elliott 2010; Kovach et 

al. 2016). Temperatures in the warm treatment remained above this for twice as long as those 

in the cool treatment, which remained closer to optimal growth conditions. Food rations were 

reduced over four weeks and temperature was increased by 0.5 ºC per week to minimise stress. 

Food was dispensed to each tank via automatic feeders (Arvo-Tec Oy, Huutokoski, Finland) 250 

during daylight hours. Feeders delivered regular pulses of food, with the frequency of pulses 

adjusted according to food treatment (i.e. fewer pulses for low food treatments). Within each 

treatment, absolute rations were adjusted on a monthly basis to account for changes in body 

mass and temperature.  

Data collection and life-history determination 255 

Within each food and temperature treatment combination, 25 – 30 fish from each fertilisation 

group were lightly anaesthised with MS-222 and marked with unique colour combinations of 

visible implant elastomer (VIE) tags (Northwest Marine Technology Ltd., Washington, USA), 

allowing for re-identification of individuals. Fork length and mass were measured at key 

periods throughout the study [Late-November in 2016 (prior to initiation of treatments), 260 

February, April, June, July, September, December in 2017, and April in 2018].  

All fish were checked weekly for morphological indicators of smolting from March to June in 

each of 2017 and 2018, the period corresponding to the natural migratory period in the wild for 

this population (Gargan et al. 2016). Wild smolts typically migrate out of the Erriff system 

aged between 1+ and 4+, with the large majority doing so aged 2+ or 3+ (approximately equal 265 

numbers of each) (Gargan et al. 2016). Smolting is a precursor to downstream migration in 

several salmonines, and comprises a number of morphological, behavioural and physiological 

changes. We used the following morphological indicators to assess smolting [following 

Tanguy et al. 1994)]: silvering/loss of parr marks; pronounced lateral line (i.e. clearly visible 

and raised to the touch); transparent fins; and fusiform shape (pointed snout, slimmer body, 270 

and elongated caudal peduncle) (Riddell and Leggett 1981; Hard et al. 1999; Villar-Guerra et 

al. 2019). Fish that clearly matched three of these criteria were classed as smolts. In spring 

2017, no fish matched the morphological criteria for smolts. In spring 2018, fish that matched 

the morphological criteria for smolts were transferred to salt water at 30 ppt for 24 hours to 

assess hypo-osmoregulatory function. Seawater “challenges” are used as an indicator of 275 

anadromy capacity, where the ability to regulate ion concentrations (e.g. to maintain plasma 

chloride concentration) in sea water is a measure of saltwater tolerance, or physiological 
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“readiness” of smolts for seawater entry (Clarke 1982; McCormick et al. 1998; Schultz and 

McCormick 2012; McCormick 2012). Fish were monitored during this period to ensure that 

any fish showing signs of failing the challenge (loss of equilibrium) could be removed and 280 

euthanised (though no fish showed signs of failure in our study). After the 24 hour seawater 

challenge, fish were euthanised with an overdose of MS-222. The mass and fork length of each 

individual was recorded, and a blood sample was obtained from the caudal vasculature using a 

21 gauge needle and a 2.6ml heparinised syringe. Blood samples were centrifuged at 8000 rpm 

for 3 minutes, and the plasma aliquot was siphoned off, stored at -80 °C and later measured for 285 

plasma chloride concentration as an indicator of osmoregulatory performance. Four to six gill 

filaments were placed in 100µl of ice-cold SEI buffer (150 mmol l-1 sucrose, 10 mmol l-1 EDTA, 

50 mmol l-1 imidazole, pH 7.3) and frozen at -80 °C for later measurement of gill Na+/K+-

ATPase (NKA) activity.  

All fish (classed morphologically as smolts or non-smolts) were dissected in spring 2018 to 290 

visually determine sex and maturation status based on gonad development. Mature males had 

enlarged white testes or running milt. Maturing males had visible or moderately enlarged testes 

but no running milt. Mature females had visible eggs in the body cavity. Immature fish 

(unconfirmed sex at the time of sampling) were later genotyped to determine genotypic sex 

using a microsatellite sex marker. The natural spawning period for the wild population-of-295 

origin is in late autumn/early winter, and the migratory period is in the spring (Gargan et al. 

2016). Since freshwater maturation generally precludes migration in brown trout (Jonsson 

1985; Dellefors and Faremo 1988; Dȩbowski and Dobosz 2016) any fish showing signs of 

maturing without having migrated to sea are considered to be on a non-anadromous trajectory, 

while smolts which undertake marine migrations are immature. We thus classed fish as smolts 300 

(migratory tactic) if they matched the morphological criteria for smolts and were immature. 

Fish were classed as mature (residency tactic) if they showed signs of maturation at the time 

of sampling. Fish that were immature and did not match the morphological criteria for smolts 

had an unknown life history at the time of sampling and were classed as “unassigned”. Whole 

body lipid content (%) was measured for all smolts and a random sample of mature (n = 107) 305 

and unassigned (n =19) fish using a CEM Smart trac5 system of integrated heating and nuclear 

resonance (CEM Corporation, Matthews, NC, USA) on individual homogenised fish samples 

(Toussaint et al. 2002; Keeton et al. 2003; Nielsen et al. 2005). Plasma chloride concentration 

was measured by coulometric titration using a Jenway PCLM3 chloride meter (FishVet Group, 

Oranmore, Ireland) for all smolts and a random sample of non-smolts (n = 107 mature fish and 310 
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n = 18 unassigned fish). Gill NKA activity was measured following McCormick et al. (2009) 

for a random sample of smolts and non-smolts (n = 25 smolts, n = 135 mature fish and n = 22 

unassigned fish).  

Statistical analysis 

To test if food and temperature acted as stressors at the level of individual traits underpinning 315 

migration (Aim 1), we explored factors affecting fork length, mass and condition of fish across 

the study period within a mixed effects modelling framework (nlme package (Pinheiro et al. 

2019)). We calculated condition factor as: 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑚𝑎𝑠𝑠 (𝑔)

𝑓𝑜𝑟𝑘 𝑙𝑒𝑛𝑔𝑡ℎ (𝑐𝑚)𝑏
 × 100 

Where b is the slope estimated from the linear relationship between log (mass) and log(fork 320 

length) (Bolger and Connolly 1989). The mixed effects models included time (continuous 

variable representing weeks since start of experiment), a quadratic term for time (to account 

for non-linearity of traits through time), food treatment, temperature treatment, fertilisation 

group, and sex as fixed effects, and individual identity as a random effect to account for 

multiple measurements on some individuals. We included an interaction between food 325 

treatment and temperature treatment (to test for synergistic or antagonistic effects of food and 

temperature), and a three-way interaction (food treatment × temperature treatment × time) to 

test whether trajectories diverged through time according to treatment combination. To 

compare single stressor effects with combined stressor effects, we carried out pairwise 

comparisons across all levels of the food × temperature interaction using Tukey post-hoc tests 330 

(emmeans package (Lenth 2019)).  

To test whether trait trajectories were similar in mature fish and smolts, we created additional 

mixed effects models with time, a quadratic term for time, migratory tactics (categorical 

variable, two levels: smolt/mature), sex, and fertilisation group as fixed effects, an interaction 

between time and migratory tactics, and a random effect of individual identity. We excluded 335 

unassigned fish in this comparison of “status” traits, as we could not determine their life-history 

trajectory i.e. some of the unassigned fish may have been on a migratory trajectory, but were 

deferring actual migration until a later age. For all of the above models, temporal 

autocorrelation of the response variable was accounted for by modelling an autoregressive error 

structure as a first order lag function of time. Separate models were constructed for z-340 
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standardised measures of length, mass and condition, and normal errors were assumed in each 

case.  

We similarly used mixed effects models (normal errors) to explore factors influencing variation 

in final measurements of traits (z-standardised length, condition, and whole body lipids) at the 

end of the study. We included food treatment, temperature treatment, fertilisation group, sex, 345 

and an interaction between food treatment and temperature treatment as fixed effects, and date 

of terminal sample (categorical variable with 8 sampling dates) as a random effect. Additional 

mixed effects models tested for differences in final measurements of status traits according to 

migratory tactics (migratory tactic, sex and fertilisation group included as fixed effects, and 

terminal sample date as a random effect).  350 

To test if food and temperature treatments affected life-history tactics (Aim 2), we built three 

generalized linear models (GLMs) with a logit-link function and binary life-history response 

variables. One GLM predicted smolt status (binary response: 1 = smolt, 0 = non-smolt), a 

second GLM predicted maturation (binary response: 1 = mature, 0 = immature), and a third 

GLM tested for differences in expression of any life-history tactics by the end of the study (i.e. 355 

by age 2+, second year of life) (binary response: 1 = unassigned, 0 = smolt or mature). All 

GLMs included the categorical variables: food treatment, temperature treatment, sex, 

fertilisation group, and an interaction between food and temperature treatments. 

To explore variation in osmoregulatory performance, we first tested for differences in gill NKA 

activity (log transformed) and plasma chloride concentration between smolts and non-smolts 360 

using mixed effects models (normal errors). Each model included life-history tactic, 

fertilisation group, and sex as fixed effects, and terminal sampling date as a random effect. We 

retained the “unassigned” life-history class in these analyses to determine if unassigned fish 

showed signs of hypo-osmoregulatory capacity in salt water relative to mature fish, suggesting 

that these unassigned fish were in fact on a smolting trajectory but were yet to express 365 

morphological indicators of smolting. Post-hoc pairwise comparisons between life-history 

tactics were carried out using the emmeans package (Lenth 2019).  

We explored the mechanisms underpinning osmoregulatory capacity by fitting a GLM (normal 

errors) to gill NKA activity as a function of size-corrected plasma chloride concentration in 

smolts and non-smolts. Because hypo-osmoregulatory capacity generally increases with size 370 

in brown trout (Finstad and Ugedal 1998), we corrected for size in this analysis by using the 

residuals of the linear relationship between plasma chloride and fork length. Finally, we 
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assessed how food and temperature treatments influenced osmoregulatory capacity of smolts 

(Aim 3) using mixed effects models. Separate models (normal errors) were constructed for z-

standardised gill NKA activity and plasma chloride concentration, with food treatment, 375 

temperature treatment, sex, fertilisation group, fork length (a covariate to correct for body size 

effects), and a food × temperature interaction included as fixed effects, and terminal sample 

date as a random effect.  

Marginal R2 values for mixed effect models were calculated using the MuMIn package in R 

(Barton 2019). We used likelihood ratio tests (LRT) to assess statistical significance of 380 

predictor variables for all models at a 5% alpha level, and non-significant interaction terms 

were excluded to interpret main effects. Analysis was carried out in R version 3.5.3 (R Core 

Team 2019), and all models were checked against assumptions of the given model 

(independence, non-normality of residuals, heteroscedasticity and multicollinearity). 

Results 385 

At the termination of the experiment, 349 fish were assigned a life-history tactic (30 smolts 

and 319 mature fish) and 76 fish were classed as “unassigned” (Table 1). The frequency of 

smolting varied by food and temperature treatments. Overall, the proportion of smolts 

(averaged across Nov and Nov-Dec fertilisation groups) was highest in the low food–cool 

temperature treatment (18.9 %), with the lowest proportion in the high food–warm temperature 390 

treatment (0.9 %), and intermediate proportions in low food–warm temperature (4.6 %) and 

high food–cool temperature treatments (3.8 %). The highest proportion of mature fish was in 

the high food–warm temperature treatment (92.5 %), followed by similar proportions in high 

food–cool temperature (75.2 %) and low food–warm temperature treatments (75.0 %). 

Maturation was lowest in the low food-cool temperature treatment (57.6 %).  395 

Morphological trait trajectories 

Physiological trait trajectories diverged through time in response to food treatment, 

temperature treatment, and fertilisation group (Figure 1A, Table 2). The models for length 

(marginal R2 = 0.68) and condition factor (marginal R2 = 0.33) retained significant interactions 

between food treatment and temperature treatment, food treatment and time, and temperature 400 

treatment and time (Table 2). The model for mass (marginal R2 = 0.61) retained a significant 

time × food × temperature interaction (Table 2). Fertilisation group had a significant effect on 

length (χ2 = 57.17, df = 1, p < 0.001), mass (χ2 = 24.49, df = 1, p < 0.001), and condition factor 

(χ2 = 8.73, df = 1, p = 0.003), with fish in the Nov fertilisation group tending to be larger and 
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heavier than those in the Nov-Dec group, and in marginally lower condition. There was no 405 

significant effect of sex on length (χ2 = 0.73, df = 1, p = 0.394), mass (χ2 = 2.01, df = 1, p = 

0.156) or condition factor (χ2 = 0.29, df = 1, p = 0.591) across the study. When food and 

temperature stressors were experienced in isolation (i.e. a single treatment applied) fish 

receiving the low food treatment were smaller (post hoc comparison of low food–cool 

temperature versus high food-cool temperature treatment: t-value = 12.06, p < 0.001), lighter 410 

(t-value = 13.26, p < 0.001) and in poorer condition (t-value = 10.74, p < 0.001). Fish in the 

warm temperature treatment were also smaller (warm temperature-high food versus cool 

temperature-high food treatment: t-value = 3.23, p = 0.007), lighter (t-value = 3.66, p = 0.002), 

but in similar condition (t-value = 1.41, p = 0.495) (Figure 2A,B,C). The positive interaction 

term between food treatment and temperature treatment indicated that effects of combined 415 

stressor treatments on length, mass, and K were less than we might expect based off their effects 

in isolation.  

Fish also varied in length (marginal R2 = 0.55), mass (marginal R2 = 0.36) and condition factor 

(marginal R2 = 0.16) trajectories according to migratory tactics, with smolts tending to be 

smaller than mature fish across the duration of the study period (χ2 = 15.55, df = 1, p < 0.001). 420 

The significant interaction between migratory tactics and time for mass and condition factor 

(Figure 1B, Table 3) indicated smolts gained less mass, with lower condition trajectories 

(Figure 2D,E,F).  

Morphological traits at the end of the study 

At the end of the experiment, fish varied in length, condition and whole body lipids depending 425 

on food treatment, temperature treatment, life-history tactics and fertilisation group (Figure 3A, 

B). The models describing final length (marginal R2 = 0.48) and condition (marginal R2 = 0.38) 

each retained a significant interaction between food treatment and temperature treatment but 

the model describing whole body lipids (marginal R2 = 0.41) did not (Table 4). We detected 

significant negative main effects of food treatment (χ2 = 63.44, df = 1, p < 0.001) but positive 430 

effects of temperature treatment (χ2 = 3.91, df = 1, p = 0.048) on lipid levels (Figure 3A). The 

significant positive interaction term (Figure 3A) indicated an antagonistic effect of food and 

temperature treatments on length and condition (Figure 3C, D, and E). Fertilisation group 

significantly affected length (χ2 = 4.56, df = 1, p = 0.033) and condition (χ2 = 5.15, df = 1, p = 

0.023). Fish in the Nov fertilisation group tended to be larger but in poorer condition, with 435 

similar lipid levels (χ2 = 0.02, df = 1, p = 0.880) to those in the Nov-Dec group. There was no 
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significant effect of sex on length (χ2 = 0.14 df = 1, p = 0.712), condition (χ2 = 2.60, df = 1, p 

= 0.107) or lipids (χ2 = 1.91, df = 1, p = 0.167).  

Life-history tactics significantly affected length (χ2 = 4.80, df = 1, p = 0.036), condition (χ2 = 

19.62, df = 1, p < 0.001) and lipids (χ2 = 13.87, df = 1, p = 0.002). Overall, smolts were smaller 440 

than mature fish, with lower condition values, and higher lipid levels (Figure 3B, C, D, E). 

Smolts and unassigned fish were similarly sized (χ2 = 0.35, df = 1, p = 0.554), with similar lipid 

levels (χ2 = 1.49, df = 1, p = 0.222), though smolts had lower condition values (χ2 = 07.48, df 

= 1, p = 0.006) (Figure S3).  

Migratory tactics 445 

The model describing the probability of smolting had significant effects of food treatment (χ2 

= 16.50, df = 1, p < 0.001), temperature treatment (χ2 = 14.08, df = 1, p < 0.001), fertilisation 

group (χ2 = 7.09, df = 1, p = 0.008) and sex (χ2 = 4.34, df = 1, p = 0.037). The interaction 

between food treatment and temperature treatment was not significant (LRT for model with 

and without interaction term: χ2 = 0.02, df = 1, p = 0.882). Food restriction increased the 450 

probability of smolting whereas the warm temperature treatment decreased the probability of 

smolting (Figure 4A, B). Males were less likely to smolt than females, and fish in the Nov 

fertilisation group were less likely to smolt than those in the Nov-Dec group (Figure 4A, B).  

The model describing the probability of maturing also had significant effects of food treatment 

(χ2 = 19.13, df = 1, p < 0.001), temperature treatment (χ2 = 17.49, df = 1, p < 0.001), sex (χ2 = 455 

15.90, df = 1, p < 0.001), but the effect of fertilisation group was not significant (χ2 = 1.04, df 

= 1, p = 0.308). The interaction between food treatment and temperature treatment was not 

significant (LRT for model with and without interaction term: χ2 = 0.99, df = 1, p = 0.319). In 

contrast to effects on smolting, the high food treatment increased the probability of maturing, 

as did the warm temperature treatment (Figure 4C, D). Males were less likely to mature than 460 

females in all treatments (Figure 4C, D).  

The model describing the probability of being unassigned a life-history tactic included 

significant effects of food treatment (χ2 = 5.62, df = 1, p = 0.018), temperature treatment (χ2 = 

4.91, df = 1, p = 0.027), sex (χ2 = 34.05, df = 1, p < 0.001) and fertilisation group (χ2 = 7.69 df 

= 1, p = 0.006). The interaction between food treatment and temperature treatment was not 465 

significant (LRT for model with and without interaction term: χ2 = 3.31, df = 1, p = 0.069). 

Fish were significantly more likely to be unassigned a life history in either the low food or cool 

temperature treatments, as were males, and fish from the Nov fertilisation group (Table 5). 



16 
 

Osmoregulatory performance 

Gill NKA activity varied according to life history (χ2 = 56.74, df = 2, p < 0.001), but was not 470 

affected by sex (χ2 = 1.28., df = 1, p = 0.258) or fertilisation group (χ2 = 0.72, df = 1, p = 0.397). 

Post hoc testing showed smolts had significantly higher NKA activity than mature fish (t = -

7.41, df = 172, p < 0.001) and unassigned fish (t = 5.15, df = 172, p < 0.001; Figure 5A). 

Similarly, plasma chloride concentration was significantly affected by life history (χ2 = 52.14, 

df = 2, p < 0.001), with no significant effect of sex (χ2 = 2.75, df = 1, p = 0.097) or fertilisation 475 

group (χ2 = 2.03, df = 1, p = 0.154). Smolts had significantly lower plasma chloride 

concentration after saltwater exposure than mature fish (t = 5.56, df = 144, p < 0.001) and 

unassigned fish (t = -6.77, df = 144, p < 0.001; see Figure 5B). Size-corrected plasma chloride 

concentration decreased significantly with gill NKA activity in smolts (χ2 = 14.18, df = 1, p < 

0.001, Figure 5C), however there was no significant relationship between size-corrected 480 

plasma chloride concentration and gill NKA activity in non-smolts (χ2 = 1.79, df = 1, p = 0.180, 

Figure 5D).  

After accounting for the significant effect of body size (χ2 = 5.97, df = 1, p = 0.015), the model 

describing plasma chloride concentration in smolts (marginal R2 = 0.49) did not retain a 

significant food × temperature treatment interaction (LRT: χ2 = 0.26, df = 1, p = 0.610). We 485 

detected a significant main effect of food treatment on plasma chloride concentration (χ2 = 

5.29, df = 1, p = 0.021), where the high food treatment was associated with lower chloride 

values (Figure 6A, B). There was no significant effect of temperature treatment (χ2 = 2.26, df 

= 1, p = 0.133), sex (χ2 = 1.60, df = 1, p = 0.205) or fertilisation group (χ2 = 2.77, df = 1, p = 

0.096) on chloride concentrations. Mixed model analysis indicated non-significant effects of 490 

fork length (χ2 = 0.06, df = 1, p = 0.814), food treatment (χ2 = 0.03, df = 1, p = 0.862), 

temperature treatment (χ2 = 0.85, df = 1, p = 0.358), sex (χ2 = 2.47, df = 1, p = 0.116) and 

fertilisation group (χ2 = 3.53, df = 1, p = 0.060) on gill NKA activity in smolts (marginal R2 = 

0.20, Figure 6A). Overall, this indicates positive direct effects food treatment (independent of 

size) on saltwater tolerance of smolts, which were not reflected in gill NKA activity. See Tables 495 

S6 and S7 for parameter estimates from the mixed effect models. 
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Table 1: Percentage of brown trout (n = 425), F1 offspring of wild trout, classed as smolts (i.e. 

migratory tactic) or non-smolts (mature or unassigned) after two years of experimental tank-

rearing. Offspring were derived from brood stock gametes fertilised in November and 500 

December 2015 (coded here as early November = “Nov” and late November/early December 

= “Nov-Dec”). Values correspond to percentages for each category (broken down by sex) of 

the total number of fish per tank (where each tank corresponds to a given food treatment by 

temperature regime combination, i.e. a single row in the table). Sample size (n) given in 

brackets after the %.  505 

 

Food Temperature Fertilisation % Smolts (n) % Mature (n) % Unassigned (n) 

  Group Female Male Female Male Female Male 

Low Cool Nov 6.1 (2) 3.0 (1) 48.5 (16) 6.1 (2) 6.1 (2) 30.3 (10) 

Low Cool Nov-Dec 15.1 (11) 8.2 (6) 19.2 (14) 39.7 (29) 8.2 (6) 9.6 (7) 

Low Warm Nov 0 (0) 0 (0) 51.5 (17) 36.4 (12) 3.0 (1) 9.9 (3) 

Low Warm Nov-Dec 2.7 (2) 4.0 (3) 41.3 (31) 28.0 (21) 2.7 (2) 21.3 (16) 

High Cool Nov 2.9 (1) 0 (0) 32.4 (11) 32.4 (11) 5.9 (2) 26.5 (9) 

High Cool Nov-Dec 2.8 (2) 1.4 (1) 43.7 (31) 36.6 (26) 2.8 (2) 12.7 (9) 

High Warm Nov 0 (0) 0 (0) 61.8 (21) 23.5 (8) 2.9 (1) 11.8 (4) 

High Warm Nov-Dec 1.4 (1) 0 (0) 48.6 (35) 47.2 (34) 0 (0) 2.8 (2) 
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Table 2: Results of the mixed effect model analysis for length, mass and condition trajectories 

of brown trout exposed to food and temperature stressors. The results of the model selection 510 

procedure on interaction terms are given, and the selected model for each response is 

highlighted in bold. The models included a random effect of individual identity and a first-

order autoregressive correlation structure with respect to time (weeks of experimental 

treatment) was also modelled. 

Model df AIC logLik L-ratio p-value 

Length ~ time*food*temperature + time2 + fertilisation + sex 14 1222.8 -597.4   

Length ~ time*food + time*temperature + time2 + 

food*temperature + fertilisation + sex 
13 1222.5 -598.3 1.8 0.186 

Length ~ time*food + time2 + food*temperature + fertilisation + sex 12 1229.7 -602.8 9.1 0.003 

Length ~ time*temperature + time2 +food*temperature + time2 + 

fertilisation + sex 
12 1422.2 -699.1 201.6 < 0.001 

Length ~ time*food + time*temperature + time2 + fertilisation + sex 12 1236.1 -606.1 15.6 < 0.001 

Mass ~ time*food*temperature + time2 + fertilisation + sex 14 1667.1 -819.6   

Mass ~ time*food + time*temperature + time2 + food*temperature + 

fertilisation + sex 
13 1672.6 -823.3 7.5 0.006 

Condition ~ time*food*temperature + time2 + fertilisation + sex 14 3023.4 -1497.7   

Condition ~ time*food + time*temperature + time2 + 

food*temperature + fertilisation + sex 
13 3022.4 -1498.2 0.9 0.337 

Condition ~ time*food + time2 + food*temperature + fertilisation + 

sex 
12 3029.8 -1502.9 9.4 0.002 

Condition ~ time*temperature + time2 +food*temperature + time2 + 

fertilisation + sex 
12 3059.6 -1517.8 39.3 < 0.001 

Condition ~ time*food + time*temperature + time2 + fertilisation + 

sex 
12 3027.3 -1501.7 7.0 0.008 

 515 
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Table 3: Results of the mixed effect model analysis for length, mass and condition trajectories 

of brown trout in the experiment with life-history classed as either smolts (i.e. migratory) or 

freshwater mature across the study period. The results of the model selection procedure on 

interaction terms are given, and the selected model for each response is highlighted in bold. 520 

The models included a random effect of individual identity and a first-order autoregressive 

correlation structure with respect to time (weeks of experimental treatment) was also modelled. 

Model df AIC logLik L-ratio p-value 

Length ~ time*life-history + time2 + sex + fertilisation 10 1300.6 -640.3   

Length ~ time + life- history + sex + fertilisation 9 1298.9 -640.4 0.2 0.637 

Mass ~ time*life-history + time2 + sex + fertilisation 10 1836.0 -908.0   

Mass ~ time + life- history + time2 + sex + fertilisation 9 1843.6 -912.8 9.7 0.002 

Condition ~ time*life-history + time2 + sex + fertilisation 10 2674.4 -1327.2   

Condition ~ time + life- history + time2 sex + fertilisation 9 2678.8 -1330.4 6.4 0.011 

 

 

 525 

Table 4: Results of the mixed effect model analysis for length, condition, and whole body 

lipids of brown trout exposed to food and temperature stressors at the end of the experimental 

study period. The results of the model selection procedure on interaction terms are given, and 

the selected model for each response is highlighted in bold. The models included a random 

effect of terminal sample date. 530 

Model df AIC logLik L-ratio p-value 

Length ~ food*temperature + fertilisation + sex 8 901.5 -422.8   

Length ~ food + temperature + fertilisation + sex 7 916.5 -451.3 16.98 < 0.001 

Condition ~ food*temperature + fertilisation + sex 8 1034.0 -509.0   

Condition ~ food + temperature + fertilisation + sex 7 1036.9 -511.5 4.94 0.026 

Lipids ~ food*temperature + fertilisation + sex 8 375.5 -179.8   

Lipids ~ food + temperature + fertilisation + sex 7 375.7 -180.8 2.18 0.140 
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Table 5: Parameter estimates with associated standard errors (SE) for three binomial 

generalised linear models (GLM) predicting smolt (migratory) probability (dummy coded: 

smolt = 1, non-smolt = 0), freshwater maturation (dummy coded: mature/maturing = 1, 

immature = 0), and “unassigned” life-history tactics (dummy coded: unassigned = 1, 535 

smolt/mature = 0) in brown trout (n = 425). The reference level of each factor is in brackets, 

i.e. effects in all models were contrasted against female fish from the Nov-Dec fertilisation in 

the High food and Cool temperature treatment. Statistical significance was assessed at p < 0.05. 

 

Effect Estimate SE t-value p-value 

GLM of probability of smolting:     

Intercept (High-Cool, Female, Nov-Dec fertilisation) -2.559 0.494 -5.176 < 0.001 

Food: Low 1.811 0.513 3.533 < 0.001 

Temperature: Warm -1.621 0.481 -3.372 0.001 

Fertilisation group: Nov -1.341 0.569 -2.358 0.018 

Sex: Male -0.849 0.417 -2.037 0.042 

GLM of probability of maturation:     

Intercept (High-Cool, Female, Nov-Dec fertilisation) 1.879 0.284 6.625 < 0.001 

Food: Low -1.054 0.248 -4.242 < 0.001 

Temperature: Warm 1.004 0.247 4.073 < 0.001 

Fertilisation group: Nov -0.261 0.255 -1.023 0.306 

Sex: Male -0.963 0.248 -3.888 < 0.001 

GLM of probability of being unassigned a life history:     

Intercept (High-Cool, Female, Nov-Dec fertilisation) -2.923 0.366 -7.986 < 0.001 

Food: Low 0.644 0.276 2.337 0.019 

Temperature: Warm -0.601 0.274 -2.192 0.028 

Fertilisation group: Nov 0.784 0.281 2.789 0.005 

Sex: Male 1.655 0.311 5.320 < 0.001 

 540 
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Figure 1: Coefficient estimates (± associated standard errors) of mixed effects models 545 

describing z-standardised length, mass and condition trajectories of brown trout offspring 

(derived from wild-caught parents from a facultatively anadromous population) that were (A) 

exposed to food and temperature stressors and (B) classified as adopting either smolt 

(migratory tactic) or freshwater maturing (non-migratory/resident) tactics after 18 months of 

tank rearing. 550 
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Figure 2: Trajectories of fork length, mass, and condition of brown trout offspring (derived 555 

from wild-caught parents from a facultatively anadromous population) under different food 

treatments and temperature treatments (A, B, C), and classed according to life-history tactics 

(D, E, and F). Food and temperature treatments are denoted in the format “Food-Temperature” 

(High or Low food, and Warm or Cool temperature) and life histories were classed as either 

smolt (migratory tactics) or mature (non-migratory). Week 0 = end of November 2015, when 560 

fish were 10 to 11 months old (Nov-Dec and Nov group, respectively).  
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Figure 3: Coefficient estimates (± standard errors) from mixed effect models describing effects 565 

of (A) food treatment and temperature treatment and (B) migratory tactics on z-standardised 

final measures of length, condition, and whole body lipids of brown trout offspring classed as 

either smolts (migratory) or freshwater mature (non-migratory/resident) at the end of the 

experimental study (Spring 2018). Median values of (C) length, (D) condition, and (E) whole 

body lipids are represented by the white horizontal lines in each box in (C), (D), and (E). Food 570 

and temperature treatments are denoted in the format “Food-Temperature” (High or Low food, 

and Warm or Cool temperature). Note that only one smolt was recorded in the High-Warm 

treatment, and thus there is no corresponding white line for the median in the High-Warm 

treatment. 
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 575 

Figure 4: Co-efficient estimates (± 95% confidence intervals) of GLMs describing probability 

of adopting (A, B) migratory and (C, D) maturation tactics in brown trout (n = 425, F1 offspring 

of wild trout from naturally facultatively anadromous population). Fish were classed as smolts 

or maturing after 18 months of tank rearing under varying food restriction and temperature 

treatments.  580 
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Figure 5: Variation in (A) gill NKA activity, and (B) plasma chloride concentration of brown 

trout – classed as smolts (migratory tactics) and mature (non-migratory), or unassigned a life-

history tactic – after 24 hours in salt water (30 ppt salinity). Size-corrected plasma chloride 

concentration was negatively related to Gill NKA activity in (C) smolts (dashed line = 95% 585 

confidence interval) but there was no relationship in (D) non-smolts (mature and unassigned 

fish).  
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Figure 6: Coefficient estimates (± 95% confidence intervals) from the mixed effects models 

describing z-standardised (A) gill NKA activity and plasma chloride concentration of brown 590 

trout smolts after a 24 hours in salt water (30 ppt salinity). Variation in plasma chloride 

concentration of smolts according to food treatment is shown in (B), where the white lines in 

each box represent the median. Note that only one smolt was recorded in the High-Warm 

treatment, and thus there is no corresponding white line for the median in the High-Warm 

treatment. 595 

 

Discussion 

Accelerating global change is exposing ecosystems to a multitude of co-occurring stressors, 

the implications of which are uncertain, particularly for migratory populations. Here we 

showed that food restriction increased the occurrence of a migratory phenotype (smolts), but 600 

conversely elevated temperature reduced smolting rates in favour of increased freshwater 

maturation (a phenotype consistent with a residency tactic). The observed effects on life-history 

were underpinned by complex, interactive effects of these putative stressors on underlying 

status traits associated with migratory decisions.  

Effects of multiple stressors on underlying morphological traits 605 

While stressors applied in isolation generally appeared to have negative effects on 

morphological traits, the effects of warming were less pronounced than food restriction, and 

varied depending on the response considered. Though fish at higher temperatures were smaller 

than their counterparts in the cool treatment, they maintained similar condition trajectories, and 

indeed had higher lipid stores at the end of the study, suggesting temperature may alter patterns 610 
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of energy allocation in different ways to food restriction. Smaller sizes and higher lipid stores 

might arise if investment into gonadal development is prioritised over somatic growth earlier 

when environmental conditions appear favourable for early growth (i.e. the warm temperature 

treatments) (Jonsson et al. 2013), supported by the high prevalence of mature fish in warm 

treatments. Interestingly, the cumulative effects of food restriction and temperature were less 615 

than expected, based on their effects in isolation, suggesting complex antagonistic interactions 

between the stressors, whereby increased temperatures reduced body size and mass at high, but 

not low, food levels. The dampened response to temperature when combined with food 

restriction could perhaps be explained by metabolic rate depression under low food conditions, 

which has previously been documented in food-limited brown trout (Auer et al. 2015, 2016). 620 

This, together with overall reduced consumption rates, may simply have swamped any effects 

of temperature on growth in the low food treatments. Indeed, bioenergetics modelling of 

stream-dwelling rainbow trout growth has indicated growth may be more affected by factors 

influencing food intake rates (such as reduced overall food availability) than by direct effects 

of temperature, particularly during warmer summer months (Railsback and Rose 1999). 625 

Effects of multiple stressors on migration 

The antagonistic effects of food restriction and higher temperatures on physiological traits were 

not apparent at the level of migratory tactics. Indeed, opposing (additive) effects of these 

putative stressors on migratory phenotypes seemed initially to be counterintuitive. While an 

increase in the migratory tactic in response to food limitation is in line with previous work 630 

(Olsson et al. 2006; Wysujack et al. 2009; O’Neal and Stanford 2011; Jones et al. 2015; Archer 

et al. 2019), surprisingly, a temperature increase of 1.8 °C above the natural temperature regime 

of the source catchment reduced smolting rates. An energy limitation scenario (where an 

environmental stressor may act to prevent individuals from reaching genetically determined 

maturation thresholds) was supported in our results at the level of the status traits. Future 635 

migrants (i.e. smolts) were consistently smaller than fish that matured in fresh water (i.e. 

residents) and differences in mass and condition trajectories indicated migrants were 

energetically deficient (relative to mature fish). Energetic limitation appeared to be associated 

with low food availability, but less so with warmer temperatures. 

Warmer temperatures have been proposed to generally increase the frequency of migrants 640 

through energetic limitation, if associated elevated metabolic demands are not offset by 

increased energetic intake (Sloat and Reeves 2014; Kendall et al. 2014). However, warming 
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can have a range of context-dependent impacts on patterns of energy acquisition and allocation 

in salmonines, which in turn may lead to a diversity of effects on life histories. For example, 

warmer temperatures are associated with higher levels of growth up until some thermal 645 

optimum (Jensen 1990; Forseth and Jonsson 1994; Elliott et al. 1995; Ojanguren et al. 2001; 

Jonsson et al. 2013), but bioenergetics modelling shows that optimal temperatures for growth 

are negatively related to daily ration amount and body size (Beauchamp 2009). Thus, higher 

temperatures could either increase or decrease average somatic growth, depending on food 

supply, the current distribution of fish sizes, and proximity to thermal growth optima. High 650 

somatic growth, along with high body condition and lipids, has been linked to increased 

freshwater maturation in facultatively migratory salmonines (Jonsson and Jonsson 1993; 

Dodson et al. 2013; Hecht et al. 2015), but other studies have found that faster growing 

juveniles may be more likely to migrate at earlier ages and smaller sizes because they are more 

energetically constrained by limited food availability (owing to much higher metabolic costs) 655 

than slower growers (Forseth et al. 1999). Moreover, migration tendency is linked to the 

relative productivity of marine and freshwater habitats, with anadromy more prevalent in areas 

where the marine environment offers better opportunities for feeding and growth (e.g. in higher 

latitudes) (Gross et al. 1988). Although the temperature stressor we simulated in our study is 

in line with projected climate warming scenarios of 1–3 °C (IPCC 2014), our warm temperature 660 

treatment remained largely within the optimal temperature range for growth in brown trout of 

13–17 °C (Elliott et al. 1995; Elliott and Hurley 2000; Ojanguren et al. 2001) (maximum 

temperature in the warm treatments was 18.2 °C). It is therefore likely that warmer 

temperatures did not tip most individuals into an energetic deficit, thus fish were more likely 

to mature, rather than to smolt, in the warm treatments.  665 

Bioenergetic modelling of migratory variation in steelhead trout has suggested that reductions 

in food resources can be mediated or exacerbated by water temperatures to alter expression of 

life histories (Benjamin et al. 2013). Few studies have empirically tested the cumulative effects 

of food supply and temperature on migratory tactics, but from our study, it appears these two 

environmental stressors may act additively, rather than synergistically, at least for populations 670 

that are well within their thermal limits. Moreover, the positive effect of temperature on 

maturation, coupled with negative temperature effects on the frequencies of smolts and 

unassigned fish, indicates here that warming acts to hasten the expression of life histories, 

driving earlier maturation instead of migration. Similar changes in life-history dynamics have 

been predicted in partially migratory masu salmon (O. masou), where favourable early growth 675 
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conditions associated with warming promoted maturation over migration and caused an overall 

decline in life-history diversity (Morita et al. 2014).  

Antagonistic effects of temperature and food on physiological traits (presumed to underpin 

migratory decisions) were not translated at the level of migratory tactics (where the putative 

stressors combined additively). Our results provide additional evidence that multiple stressors 680 

can alter ecological responses in unexpected ways, sometimes termed “ecological surprises” 

(Paine et al. 1998). This suggests that effects of stressors can vary depending on the level of 

organisation, or indeed the response, that is measured (Galic et al. 2018). It also underscores 

how environmental factors may affect migratory decisions directly, and not solely through 

environmentally induced changes in putative cueing traits. For example, temperature can affect 685 

gene expression with long-lasting consequences for future behaviour and life history (Jonsson 

and Jonsson 2019). There is some evidence to support that warming, in particular, can directly 

alter life-history tactics e.g. temperature hastened maturation at smaller sizes in nine-spined 

sticklebacks (Pungitius pungitius) independently of temperature-mediated growth (Kuparinen 

et al. 2011). Changes in somatic growth or energy allocation due to antagonistic effects of 690 

stressors therefore adds an additional layer of complexity to our ability to infer future migratory 

tactics from patterns of juvenile growth.  

Early life conditions affect migration propensity 

The effects of fertilisation group on migratory propensity was an unexpected outcome of our 

study. While the relatively small numbers of brood stock used makes it difficult to draw 695 

conclusions regarding differences between fertilisation groups, which most likely  stem from 

inherited genetic effects or epigenetic/parental effects, differences might nonetheless reflect 

non-inherited variation arising from early-life environment that has knock-on effects for future 

phenotype (Burton and Metcalfe 2014). Moreover, differences in the timing of readiness for 

reproduction/fertilisation also indicates differences among brood stock (e.g. spawning site in 700 

the wild) that may have translated into genetic or parental effects, rather than an effect of 

fertilisation date per se. Although both fertilisation groups experienced the same food 

restriction and temperature treatments, phenotypic differences that were established before the 

application of treatments continued throughout the experimental phase of the study (e.g. fish 

from the Nov fertilisation group, whilst larger, tended to be in poorer condition), supporting 705 

genetic/ parental effects as factors which may be equally as important as downstream 

environmental conditions. Interestingly, individuals in the earlier fertilisation group were more 
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likely to be classed as “unassigned” by the end of the study. Delayed phenotypic expression of 

migratory tactics can be reconciled with the existence of multiple decision windows, where an 

initial window determines the overall migration versus residency decision but then subsequent 710 

windows determine the actual age at which migrants become smolts, and residents mature 

(Ferguson et al. 2019). Age at smolting, and age at maturation, may involve similar threshold 

mechanisms as the overarching migration decision but perhaps with different status traits 

playing the role of ‘trigger’; e.g. size or growth rates may determine age at smolting in Atlantic 

salmon but lipid levels may determine age at first maturation (Rowe et al. 1991; Jonsson and 715 

Jonsson 1993, 2005). Complex environmental stressor effects on these various cues could then 

increase or decrease overall life-history diversity through temporal variation in migration or 

maturation patterns. In the Erriff system from which our brood stock was obtained, seaward-

migration of wild fish is typically undertaken by smolts at two or three years after hatching 

(Gargan et al. 2016), with potentially up to half of smolts migrating at age 3+. Similarly, 720 

although the age distribution of mature residents is unknown for the Erriff system, maturation 

at ages of 3+ and older is likely. As such, the patterns we observed might have reflected stressor 

effects on age at migration or age at maturity, in addition to effects on tactic choice per se. At 

least in relation to food restriction, we have no reason to expect that the increased smolting 

rates we observed in our low food treatments at age 2+ would have been counter-balanced by 725 

increased maturation rates at age 3+ of the remaining unassigned fish; if anything, these were 

likely to have been simply delaying actual smolting until an older age, and therefore larger size 

(given that larger smolts are more likely to survive the critical transition to the marine 

environment). In other words, smolting rate differences measured across ages 2+ and 3+ 

combined, if the experiment had been continued for an additional year, were likely to have 730 

been even more pronounced between food treatments. It is less obvious whether the same can 

be said for temperature effects, but we have no a priori reason to expect that age 3+ smolting 

rates would respond in the opposite direction to sustained higher temperatures than age 2+ 

smolting rates.  

Stressor effects on future migratory capacity 735 

A final aim of our study was to assess if exposure to multiple stressors influenced the capacity 

of migratory individuals to successfully transition to sea water (an indicator of future migratory 

success). Smolts generally showed heightened hypo-osmoregulatory performance relative to 

non-smolts (for a given fish size as indexed by reduced plasma chloride levels following 

seawater exposure), which was associated with increased Na+,K+-ATPase activity, a key 740 
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enzyme involved in ion regulation. This is in agreement with many previous studies in 

salmonines that have described high NKA activity in smolts, which is related directly to ability 

to maintain homeostasis in seawater (McCormick et al. 1998, 2009b, 2013; Nilsen et al. 2007). 

We had expected the addition of stressors might further influence the hypo-osmoregulatory 

performance of smolts through negative effects on size, irrespective of enzyme activity, and 745 

indeed, we did detect a size dependency in plasma chloride levels, which was not reflected in 

gill NKA activity. Size-dependent increases in salinity tolerance that are independent of the 

size-dependent smolt decision have also been previously established for salmonines 

(McCormick et al. 1998). Thus, though the overall frequency of smolting was lower in optimal 

growth conditions (i.e. high food regimes in our study), the small number of smolts that were 750 

produced under these good growing conditions were larger and in better condition than their 

counterparts exposed to less favourable conditions. Intriguingly, we detected an additional 

negative effect of food restriction on hypo-osmoregulatory performance that was independent 

of size. Food limitation could potentially contribute to competitive interactions between 

individuals, emergence of dominance hierarchies, and generally heightened physiological 755 

stress, with implications for seawater tolerance and survival of brown trout (Pickering 1989; 

Sigholt and Finstad 1990; Liebert and Schreck 2006; Midwood et al. 2014). Collectively, these 

results suggest that food deprivation may act as a stressor to migrants, which may have negative 

impacts for survival at sea (Ward and Slaney 1988), and possibly reduce the overall fitness of 

the migratory life history.  760 

Implications and considerations 

Considerable uncertainty still surrounds how environment and genetics integrate, via mediating 

physiological traits, to influence complex life-history patterns of facultatively migratory 

species (Crozier et al. 2008). Here, we focused on two stressors that are likely to occur in 

synchrony based on projections of global change, with important implications for an 765 

experimentally reared population of trout that can be extrapolated to wild populations, though 

some caveats should be noted. Whilst macroinvertebrate abundance and size are indeed 

projected to shrink with rising temperatures across the range of brown trout distribution 

(Durance and Ormerod 2007), in natural systems trout have been shown to track shifts in prey 

community assemblies (Woodward et al. 2010) or even become more selective in diet as 770 

temperatures increase (O’Gorman et al. 2016). Furthermore, given that our study population 

originated from a relatively cool catchment, it is possible that temperature increases in similar 

systems will primarily serve to increase fish growth/energetic status and promote residency, 
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although this very much depends on how other key factors such as food supply, flow rates, 

biotic factors also respond to climate change. Any reductions in anadromy would likely alter 775 

the transfer of nutrients between freshwater and marine systems, with consequences for wider 

ecosystem processes (Doughty et al. 2016). If warming results in overall decreases in life-

history diversity within populations (e.g. Benjamin et al. 2013; Morita et al. 2014) that are 

coherent over broad spatial scales, this could lead to a reduction in the “portfolio effect” in 

salmonines, whereby maintaining a range of phenotypic diversity buffers aggregations of 780 

populations and even entire species from changing environmental conditions (Schindler et al. 

2015). 

Expanding our approach to additional populations, including those that are closer to their 

thermal limits, e.g. in southern Europe, may alter the patterns we observed here (Almodóvar et 

al. 2012). There is some evidence for genotype by temperature interactions in key phenotypic 785 

traits in salmonines (Doctor et al. 2014) but the role of intrinsic factors relative to 

environmental context requires further exploration (Ferguson et al. 2017). Common garden or 

reciprocal transplant style experiments in the wild would help to elucidate the mechanisms 

underpinning responses to multiple stressors in migratory species, whilst also incorporating the 

complexities of natural systems, such as changes in prey community structure, or abiotic 790 

correlates of warming (e.g. reduced oxygen/flow) (Clews et al. 2010). Nevertheless, our study 

has important implications for the development of management strategies to conserve 

facultatively migratory salmonines, a culturally iconic group in global decline due to 

aquaculture expansion, habitat degradation, and climate change (Costello 2009; Limburg and 

Waldman 2009).  795 
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