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Abstract: 
	
	
 A series of tridentate pincer ligands, each possessing two sulfur- and one nitrogen-

donor functionalities (SNS), based on a bis-imidazolyl precursor were metallated with 

CuCl2 to give new tridentate SNS pincer copper(II) complexes [(SNS)CuCl2].  These 

purple complexes exhibit a five-coordinate pseudo-square pyramidal geometry at the 

copper center.  The [(SNS)CuCl2] complexes were characterized with single crystal X-

ray diffraction, electrospray mass spectrometry, EPR spectroscopy, attenuated total 

reflectance infrared spectroscopy, UV-Vis spectroscopy, cyclic voltammetry, and 

elemental analysis.  The EPR spectra are consistent with typical anisotropic Cu(II) 

signals with four hyperfine splittings in the lower-field region (g||).  Various electronic 

transitions are apparent in the UV-Vis spectra of the complexes and originate from d-to-d 

transitions or various charge transfer transitions.  We performed computational studies to 

understand the influence that structural constraints internal to our tridentate SNS ligand 

precursors have on the oxidation state of the resulting bound copper complex.  We have 

determined that a d9 copper(II) metal center is better situated than a d10 copper(I) center 

to bind our tridentate SNS ligand set when it does not contain an internal CH2 group.  

Without this methylene linker, the SNS ligand forces the N and S atoms into a T-shaped 

arrangement about the metal center.   
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Introduction 

	
Recently, we have prepared and reported a series of tridentate pincer ligand 

precursors, each of which possesses SNS donor atoms.[1-2]   In our previous studies, we 

have used a variety of these ligand sets to prepare tetradentate zinc(II) and tridentate 

Cu(I) SNS pincer complexes.  The SNS ligand framework can be constructed through the 

linking of two thioimidazolyl and thiotriazolyl heterocycles with one pyridinyl unit, 

resulting in an organic framework that is capable of tridentate chelation of a metal ion.   

Using 2,6-dibromopyridine as a starting material results in the binding of the 

thioimidazolyl groups directly to the pyridine moiety (1a-c), thereby generating a stiff 

ligand system in which rotation about the C-N bond that links the pyridinyl and 

imidazolyl moieties is the only way in which these rings can move relative to each other.  

We have also prepared SNS ligands with a greater degree of flexibility (2a-c and 3a-c) by 

employing 2,6-(dibromomethyl)pyridine, thereby introducing a methylene linker into the 

ligand set.  We were able to fine-tune further the electronic environment within the 

framework of these systems by using imidazolyl- (2a-c) and triazolyl- (3a-c) based 

precursors in the preparation of the pincer ligands. 
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Figure 1. SNS ligand precursors previously prepared by Miecznikowski et al.[1-2] and 

Jin et al [3]  

 

The use of zinc(II) chloride to prepare zinc(II) compounds that contain these 

ligand precursors (Figure 1, 1a-c, 2a-c, and 3a-c) has proven to be straightforward and 

demonstrates the influence that various modifications within the ligand set can have on 

the coordination of the metal center.  By and large, these syntheses result in the formation 

of four-coordinate pseudo-tetrahedral zinc(II) complexes in which a chloride and the SNS 

tridentate ligand are bound to the metal center.  The specific SNS ligands that gave rise to 

these systems were of two types: they either (1) possessed methylene linkers between the 

pyridinyl and the imidazolyl or triazolyl groups or (2) they did not have such a linker and 

contained only imidazolyl (not triazolyl) groups.  The counterion for such systems was 

found to be a trichloro- or a tetrachlorozincate anion.  In one instance, however, a five-

coordinate pseudo-trigonal-bipyramidal zinc(II) complex resulted when the ligand 

contained thiotriazolyl functionalities and no methylene linkers between the triazolyl and 

pyridinyl groups.  In this complex, the tridentate ligand bonded to the zinc(II) center via 

the pyridinyl N atom and the available triazolyl N atoms.  This NNN binding of the 

ligand placed these three atoms in a meridional arrangement about the metal center with 
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the pyridinyl N atom occupying an equatorial position and the two triazolyl N atoms in 

axial positions.   

 Given that copper metalloproteins contain nitrogen (N-His) and sulfur (cysteine) 

donor atoms to the metal center, we have chosen to investigate the synthesis of copper-

containing systems that contain our SNS ligand sets.  The preparation of copper 

complexes that contain nitrogen and sulfur donor atoms is certainly of interest in 

bioinorganic chemistry. For example, in electron-transfer proteins, cysteine-thiolate 

copper ion interactions are important.[4-5] Sulfide-Cu interactions are found in the Cu4-S 

cluster in the enzyme nitrous oxide reductase.[6-8] In addition, thioether methionecopper 

ion interactions occur in type 1 “blue” electron transfer proteins and in the active site of 

certain monooxygenases.[9-10]  Recently, Hor and co-workers reported a five-coordinate 

mononuclear Cu(II) complex that contained a tridentate ligand with SNS donor 

atoms.[11]    Three-,[12-16] four-,[17-20] and five-coordinate [11,18, 19, 21-34]  

mononuclear copper(II) complexes have been reported previously.  For the five-

coordinate copper(II) complexes, both pseudo-trigonal bipyramidal and pseudo-square 

pyramidal coordination environments at the copper(II) center have been reported. 

 We have recently published a synthetic, spectroscopic, and computational study 

of several copper(I) systems that we have prepared using our SNS ligands 2a, 3a, and 

3c.[35]  Of particular note is that when the ligand set possesses a methylene linker 

between the pyridinyl and the thioimidazolyl or thiotriazolyl groups, the resulting metal-

bound systems exhibit pseudo-trigonal-planar binding of the tridentate ligand set in an 

SNS fashion.  Also of interest was our finding that when copper(II) chloride is used as 

the source of the metal ion, a disproportionation reaction occurs in which copper(I) ions 
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are produced and bound by the SNS ligand to give a monocationic copper(I)-bound 

complex with the general formula [(SNS)Cu]+.  Two of these cations are balanced by one 

copper(II)-containing CuCl42- anion. 

   For our current work, our focus is on the synthesis and characterization of novel 

copper-SNS complexes with the ligand precursors that were not used in our previous 

study.  Reaction of copper(II) chloride with ligand sets 1a-c, which have thioimidazolyl 

groups and no internal methylene linkers, gives rise to five-coordinate copper(II) 

complexes in which the SNS ligand set and two chlorides are bound to the metal center.  

Disproportionation of the metal was not observed during these syntheses.   

Therefore, we present here the syntheses, X-ray crystallographic, spectroscopic 

and electrochemical characterizations of copper(II) complexes that contain ligand 

precursors 1a-c.  As with our previous work with zinc(II), we find that fine-tuning of the 

SNS ligand set allows for the preparation of copper complexes with various coordination 

environments about the metal center.  The availability of the copper(I) and copper(II) 

oxidation states allows an extra area of study in which the charge on the metal center can 

be controlled through modification of the ligand set.  Our computational study of these 

systems provides insight into the influence of the ligand sets on the oxidation state and 

the coordination environment of our Cu-SNS systems. 

 

Experimental: 
 
General Procedures: 
 

All reagents used are commercially available and were used as received.  All of 

the reagents and solvents were purchased from Acros Organics except for diethyl ether, 
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and sodium acetate, which were purchased from Fisher.  2,6-bis {[N-butyl]imidazole-1-

ylidene-2-thione} pyridine, and 2,6-bis{[N-isopropyl]imidazole-1-ylidene-2-

thione}pyridine, 2,6-bis{[N-neopentyl]imidazole-1-ylidene-2-thione} pyridine were 

reported previously.[1,3]   

Each sample was analyzed by direct flow injection (injection volume = 3 or 10 

µL) ElectroSpray Ionization (ESI) on a Waters Qtof API US instrument in the positive 

mode. The optimized conditions were found as follows: Capillary = 3000 kV, Cone = 10 

or 35 V, Source Temperature = 120 °C and Desolvation Temperature = 120 or 350 °C. 

Cyclic voltammetry experiments were performed using a Cypress 

Electroanalytical System with a silver wire reference electrode, a glassy carbon working 

electrode, and a platinum counter electrode.  The supporting electrolyte for the cyclic 

voltammetry experiments was tetra-N-butylammonium tetrafluoroborate.  The solvent for 

the cyclic voltammetry experiments was dimethyl sulfoxide.  The ferrocenium/ferrocene 

couple was used as an internal reference; reduction potential values were corrected by 

assigning the ferrocenium/ferrocene couple to 0.40 V versus SCE.    

IR spectra were collected using a Thermo Nicolet AVATAR 380-FT-IR with a 

SMART SPECULATR reflectance adaptor.   C, H, N elemental analyses were performed 

by Atlantic Microlab Inc. (Norcross, GA).   

Low temperature (10K) EPR measurements were made using a Bruker X-band 

ESEXSYS E 500 spectrometer equipped with an ESR900 continuous flow liquid helium 

cryostat. EPR spectra were collected at (9.24 GHz), (2mW) microwave power, and with a 

(1G) modulation amplitude.   The EPR sample of a copper complex was prepared by 
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dissolving 3 mg of the copper complex in 0.8 mL of methanol. Spectra were collected of 

oxidized samples and required no reduction prior to data collection. 

 

Density Functional Calculations: 

Gaussian 03 was used to perform single-point calculations and geometry 

optimizations using the B3LYP hybrid functional.  The 6-311g(d) basis set as provided 

with the software was employed for H, C, N, and S and 6-311g(d,p) was used for Cu.  

Calculations were performed using N-methyl pendant groups and C2 symmetry in all 

cases.  Frequency analyses were performed on the optimized structures to determine 

whether or not they represented true minima. All structures presented no imaginary 

frequencies. 

 
 
Syntheses: 
 
Synthesis of dichloro-[(η3-S,S,N)(2,6-bis){[N-isopropyl]imidazole-1-ylidene-2-thione} 

pyridine copper (II)] [4] 

In 25 mL round bottom flask, 0.0784 g (0.000218 mol) of 2,6-bis{[N-

isopropyl]imidazole-1-ylidene-2-thione}pyridine was combined with 0.0591 g CuCl2 

(0.000440 mol) and dissolved in 10 mL of dichloromethane. The solution mixture was 

refluxed for 20 h. After this time, the solvent was removed under reduced pressure. 

Yield: 0.16 g (98 %). Single crystals for X-ray diffraction and elemental analysis were 

grown by a slow vapor diffusion of diethyl ether into a methanol solution containing the 

copper complex. 
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IR bands (reflectance, solid crystal), νmax/ cm-1 (intensity) 3078.85 (w), 2976.60 (w), 

1597.46 (m), 1452.54 (s), 1430.57 (s), 1408.82 (m), 1368.07 (w), 1330.08 (w), 1296.16 

(w), 1283.16 (w), 1219.62 (s), 1137.59 (w), 1075.82 (w), 1022.85 (w), 997.84 (w), 

882.87 (w), 808.48 (m), 780.84 (m), 732.94 (s), 690.28 (m), 652.95 (m). 

Mass Spec  Electrospray MS (MeOH, 10V, positive ion mode (m/z): Expected:  422.05 

(100 %) [C17H21N5S2Cu]2+, Found:  422.0524 (100%) [C17H21N5S2Cu]2+.     

Anal. Calc for [C17H21Cl2CuN5S2]:  C, 41.34; H, 4.29; N, 14.18.  Found: C, 40.90; H, 

4.43; N, 14.00. 

Electronic absorption, λmax (CH3OH)/nm (ε/M−1 cm−1): 581 (107), 410 sh. (246), 305 sh. 

(4771), 270 (9090), 268 (9250), 261 (9580), 254 (9860), 249 (10100), 246 (9810), 244 

(9850), 242 (10080), 238 (9750), 235 (9580), 231 (9310), 219 (7620).  

 

Synthesis of dichloro-[(η3-S,S,N)(2,6-bis){[N-neopentyl]imidazole-1-ylidene-2-thione} 

pyridine copper (II)] [5]  

In 25 mL round bottom flask, 0.1440 g (0.0003468 mol) of 2,6-bis{[N-

neopentyl]imidazole-1-ylidene-2-thione}pyridine was combined with 0.0461 g CuCl2 

(0.000343 mol) and dissolved in 10 mL of dichloromethane. The solution mixture was 

refluxed for 20 h. After this time, the solvent was removed under reduced pressure. 

Yield: 0.18 g (96 %). Single crystals for X-ray diffraction and elemental analysis were 

grown by a slow vapor diffusion of diethyl ether into a methanol solution containing the 

copper complex. 

IR bands (reflectance, solid crystal), νmax/ cm-1 (intensity) 3082.12 (br), 2954.85 (br), 

2868.86 (br), 1596.28 (m), 1455.70 (s), 1418.14 (m), 1397.96 (s), 1365.68 (m), 1300.64 

(w), 1280.50 (m), 1234.15 (s), 1184.01 (w), 1146.35 (w), 1119.85 (w), 1100.70 (w), 
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1061.83 (w), 997.49 (w), 957.30 (w), 936.96 (w), 903.23 (w), 807.42 (m), 784.56 (m), 

731.62 (s), 689.43 (m), 672.11 (m) 

Mass Spec  Electrospray MS (MeOH, 10V, positive ion mode (m/z): Expected:  478.12 

(100 %) [C21H29N5S2Cu]2+, Found:  478.1156 (100%) [C21H29N5S2Cu]2+. 

Anal. Calc. for [C21H29Cl2CuN5S2]�H2O:  C, 44.40; H, 5.50; N, 12.33.  Found: C, 44.70; 

H, 5.15; N, 12.33. 

Electronic absorption, λmax (CH3OH)/nm (ε/M−1 cm−1): 571 (396), 403.16 sh. (647), 310 

(8100), 266.90 sh. (17900), 249.46 sh. (20700), 229.55 sh. (23100), 215 (25800).  

 

Synthesis of dichloro-[(η3-S,S,N)(2,6-bis){[N-butyl]imidazole-1-ylidene-2-thione} 

pyridine copper (II)] [6] 

In 25 mL round bottom flask, 0.1414 g (0.0003648 mol) of 2,6-bis{[N-

butyl]imidazole-1-ylidene-2-thione}pyridine was combined with 0.0486 g CuCl2 

(0.000361 mol) and dissolved in 10 mL of dichloromethane. The solution mixture was 

refluxed for 20 h. After this time, the solvent was removed under reduced pressure.  

Yield:  0.18 g (95 %). Single crystals for X-ray diffraction and elemental analysis were 

grown by a slow vapor diffusion of diethyl ether into a methanol solution containing the 

copper complex. 

IR bands (reflectance, solid crystal), νmax/ cm-1 (intensity) 3077.90 (br), 3029.02 (br), 

2957.19 (br), 2929.65 (br), 2869.98 (br), 1738.27 (s), 1596.14 (s), 1506.03 (w), 1453.23 

(s), 1424.06 (m), 1403.69 (m), 1371.03 (s), 1284.97 (m), 1231.56 (s), 1216.71 (s), 

1154.12 (w), 1116.70 (w), 1106.03 (w), 1072.38 (w), 997.02 (m), 955.19 (w), 904.67 

(w), 877.03 (w), 807.57 (s), 689.67 (m), 676.69 (m), 649.27 (m), 609.19 (w) 
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Mass Spec  Electrospray MS (MeOH, 10V, positive ion mode (m/z): Expected:  450.08 

(100 %) [C19H25N5S2Cu]2+, Found:  450.0865 (100%) [C19H25N5S2Cu]2+.     

Anal. Calc. for [C19H25Cl2CuN5S2]:  C, 43.72; H, 4.83; N, 13.42.  Found: C, 43.63; H, 

4.90; N, 13.44. 

Electronic absorption, λmax (CH3OH)/nm (ε/M−1 cm−1): 578 (18), 310 (2550), 275 (4760), 

268 (4980), 266 (4980), 263 (5020), 260 (5010), 256 (5280), 254 (5410), 250 (5330), 244 

(5330), 241 (5190), 239 (5170), 237 (5100), 234 (5010). 

 
 
 
Crystallographic Analyses:   

A crystal of 4 (vide infra) was mounted on a CryoLoop (Hampton Research) and 

placed in a -100 °C compressed air stream on an Agilent Gemini-EOS Single Crystal 

Auto diffractometer at Keene State College (Keene, NH).  Crystallographic data were 

collected using graphite monochromated 0.71073 Å Mo-Ka radiation and integrated and 

corrected for absorption using the CrysAlisRed software package.[36]  The structures 

were solved using direct methods and refined using least-square methods on F-

squared.[37]  All other pertinent crystallographic details such as h, k, l ranges, 2q ranges, 

and R-factors can be found in Table 1.  CCDC file 955935 contains the supplementary 

crystallographic data for this paper.  These data can be obtained free of charge from The 

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.   

A crystal of 5 (vide infra) was mounted on a CryoLoop (Hampton Research) and 

placed in a -100 °C compressed air stream on an Agilent Gemini-EOS Single Crystal 

Autodiffractometer at Keene State College (Keene, NH).  Crystallographic data were 

collected using graphite monochromated 0.71073 Å Mo-Ka radiation and integrated and 
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corrected for absorption using the CrysAlisRed software package.[36] The structures 

were solved using direct methods and refined using least-square methods on F-

squared.[37] Unresolved solvent electron density was voided and further refined using 

PLATON SQUEEZE.[38-40] All other pertinent crystallographic details such as h, k, l 

ranges, 2θ ranges, and R-factors can be found in Table 1.  CCDC file 955937 contains the 

supplementary crystallographic data for this paper.  These data can be obtained free of 

charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif.   

A crystal of 6 was mounted on a glass loop and placed in an -80 oC nitrogen 

stream on a Bruker diffractometer equipped with a Smart CCD at Boston College 

(Chestnut Hill, MA).  Crystallographic data were collected using graphite 

monochromated 0.71073 Å Mo-Ka radiation and integrated and corrected for absorption 

using the Bruker SAINTPLUS software package.[41, 42]   The structures were solved 

using direct methods and refined using least-square methods on F-squared.[37]   All other 

pertinent crystallographic details such as h, k, l ranges, 2q ranges, and R-factors can be 

found in Table 1.  CCDC file 955936 contains the supplementary crystallographic data 

for this paper.  These data can be obtained free of charge from The Cambridge 

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.   
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Table 1.  Crystal and Structure Refinement Data for 4-6 

 R = iPr [4] R = nP [5] R = nBu [6] 
Formula C20H28Cl2CuN5S2�2H2O C21H29Cl2CuN5 

S2�2(CH3OH) 
C19H25Cl2CuN5S2 

FW (g/mol) 499.94 614.17 522.00 
Temperature (K) 173(2) 173(2) 193(2) 
Wavelength (Å) 1.54184 1.54184 0.71073 
Crystal System Monoclinic Monoclinic Monoclinic 
Space Group P2(1)/n P2(1)/c P2(1)/n 

a (Å) 9.2294(4) 16.1818(3) 9.6406(5) 
b (Å) 15.8843(6) 15.5578(2) 16.4452(9) 
c (Å) 14.7667(6) 26.9147(5) 14.8423(7) 
a (o) 90 90 90 
b (o) 95.762(4) 105.1594(18) 99.610(2) 
g (o) 90 90 90 

Volume (Å)3 2153.91(15) 6540.10(19) 2320.1(2) 
Z 4 8 4 

r (calc) (g/cm3) 1.542 1.247 1.494 
Abs (mm-1) 5.645 3.848 1.368 

F(000) 1025 2568 1076 
Crystal Size (mm3) 0.08 x 0.06 x 0.04 0.44 x 0.42 x 0.22 0.08 x 0.08 x 0.07 

Theta Range (o) 4.10 to 70.69 3.31 to 72.60 1.86 to 26.33 
Refl/Uniq 16138/4079 45624/12795 17923/4715 

R(int) 0.0332 0.0413 0.0289 
Abs Correction None None None 

Max./Min. 1.00000/0.616 0.42900/0.23000 0.9103/0.8985 
Ref Method Full Matrix least squares 

on F2 
Full Matrix least 

squares on F2 
Full Matrix least 

squares on F2 
Data / restr / par 4079 / 15 / 285 12795 / 0 / 651 4715/0/264 

GOF on F2 1.050 1.095 1.014 
R1 indices (I>2s) 0.0390 0.0712 0.0322 

wR2 0.1007 0.1868 0.0685 
Peak/hole  

(e/Å-3) 
0.744 and -0.407 1.065 and -1.173 0.541 and -0.297 

 

 

 

 

 



	 15	

 

Results and Discussion: 

Syntheses  

As shown in Scheme 1, ligand precursors 1a-c react with one equivalent of CuCl2 

in refluxing CH2Cl2 to afford the five-coordinate copper complexes 4-6.  The driving 

force for the metallation is the formation of the the copper complex, which is sparingly 

soluble in CH2Cl2.  All of the reactions (scheme 1) were performed in air and proceeded 

with yields at or above 95 %.  Complexes 4-6 are soluble in dimethyl sulfoxide, 

acetonitrile and methanol and are sparingly soluble in dichloromethane and chloroform.  

Complexes 4-6 are dark purple.  Crystals suitable for X-ray diffraction were grown by 

allowing diethyl ether vapor to slowly diffuse into a methanol solution containing the 

copper complex.  

 

Scheme 1:  Preparation of five-coordinate copper complexes that contain a tridentate 

SNS ligand. 

 

All of these copper complexes were characterized using UV-visible spectroscopy, 

electrospray mass spectrometry, attenuated total reflectance infrared spectroscopy, 

electron paramagnetic resonance spectroscopy, cyclic voltammetry, and elemental 

NN N
N N

R R
S S

4, R = iPr, 98 %
5, R = neopentyl, 96 %
6, R = nBu, 95 %

NN N
N N

R RS S
Cu

Cl

CH2Cl2
CuCl2

reflux

1a, R = iPr
1b, R = neopentyl
1c, R = nBu,

Cl
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analysis.   The following sections describe the characterization of these novel copper 

complexes. 

 

Single Crystal X-ray structures 

The solid-state structures of 4-6 are shown in Figures 1-3. These complexes, with 

a tridentate SNS donor ligand and two bound chlorides, possess pseudo-square-pyramidal 

geometry about the copper(II) center. 

 

Figure 1.  Molecular structure of 4 showing the atom labeling scheme and 50% 

probability ellipsoids. 
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Figure 2.  Molecular structure of 5 showing the atom labeling scheme and 50% 

probability ellipsoids. 
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Figure 3.  Molecular structure of 6 showing the atom labeling scheme and 50% 

probability ellipsoids.   The hydrogen atoms on carbon atoms have been omitted for 

clarity.    

 
Various bond lengths and angles for 4-6 are given in Tables 2-4, respectively.  

 

 

 

 

 

 

 

 

 

 

!
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Table 2:  Selected bond lengths and angles (esd) for 4. 

  [4] 

Cu(1A)-N(1) (Å) 2.289(2) 

Cu(1A)-Cl(1) (Å) 2.3352(7) 

Cu(1A)-Cl(2) (Å) 2.3113(7) 

Cu(1A)-S(2) (Å) 2.3094(8) 

Cu(1A)-S(1) (Å) 2.3274(8) 

S(1)-C(9) (Å) 1.701(3) 

S(2)-C(8) (Å) 1.708(3) 

N(1)-Cu(1A)-Cl(1) 104.39(6) 

N(1)-Cu(1A)-S(1) 84.95(6) 

Cl(1)-Cu(1A)-S(2) 95.38(3) 

S(1)-Cu(1A)-S(2) 170.97(3) 

Cl(1)-Cu(1A)-Cl(2) 148.79(3) 

S(1)-Cu(1A)-Cl(1) 96.96(3) 
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Table 3:  Selected bond lengths and angles (esd) for 5. 

  [5] 

Cu(1A)-N(3A) (Å) 2.223(4) 

Cu(1A)-Cl(1A) (Å) 2.3609(11) 

Cu(1A)-Cl(2A) (Å) 2.3129(12) 

Cu(1A)-S(2A) (Å) 2.3235(13) 

Cu(1A)-S(1A) (Å) 2.3218(12)Å 

S(1A)-C(1A) (Å) 1.709(4) 

S(2A)-C(9A) (Å) 1.704(4) 

N(3A)-Cu(1A)-Cl(2A) 119.77(9) 

N(3A)-Cu(1A)-S(1A) 84.29(10) 

Cl(2A)-Cu(1A)-S(1A) 89.83(4) 

S(1A)-Cu(1A)-S(2A) 169.62(5) 

Cl(1A)-Cu(1A)-Cl(2A) 129.77(5) 

S(1A)-Cu(1A)-Cl(1A) 95.15(4) 
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Table 4:  Selected bond-lengths and angles (esd) for 6. 

  [6] 

Cu(1)-N(1) (Å) 2.3385(18) 

Cu(1)-Cl(1) (Å) 2.2797(6) 

Cu(1)-Cl(2) (Å) 2.3032(6) 

Cu(1)-S(2) (Å) 2.3292(7) 

Cu(1)-S(1) (Å) 2.3163(7) 

S(1)-C(6) (Å) 1.708(2) 

S(2)-C(13) (Å) 1.703(2) 

N(1)-Cu(1)-Cl(1) 113.65(5) 

N(1)-Cu(1)-S(1) 84.65(5) 

Cl(1)-Cu(1)-S(2) 94.11(2) 

S(1)-Cu(1)-S(2) 168.53(2) 

Cl(1)-Cu(1)-Cl(2) 141.15(3) 

S(1)-Cu(1)-Cl(2) 95.16(2) 

 

As can be seen in Tables 2-4, the Cu-N bond length is shorter in 5 (2.22 Å) than 

in 4 and 6 (2.29 Å and 2.33 Å, respectively).  The Cu-S bond lengths are nearly identical 

for all of the complexes (ca. 2.31-2.32 Å).  The Cu-Cl bond lengths are longest in 5 (2.36 

and 2.31 Å) and shortest in 6 (2.27 and 2.30 Å).  The Cu-Cl bond lengths in 4 (2.33 and 

2.31 Å) are between those found in 5 and 6. 

The carbon-sulfur bond lengths in 4-6 are between what is normally associated 

with a C-S single bond (1.83 Å) and a C=S double bond (1.61 Å).[43]   In these 
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complexes, the carbon-sulfur bond lengths range between 1.695 Å and 1.714 Å are closer 

to that of a C=S double bond than a C-S bond.  The Cu-Cl bond lengths are about 0.2 Å 

shorter than previously reported for a Cu(II) complex with pseudo-square pyramidal 

geometry.[26]   The Cu-N bond length is between 0.2 to 0.3 Å longer than that for a 

previously reported Cu-N(pyridine) bond length for a Cu(II) complex with pseudo-square 

pyramidal geometry.[26]   The copper-sulfur bond lengths are consistent with those of 

single bonds in five-coordinate copper-complexes with pseudo-square pyramidal 

geometry.[11]   

 

Electrospray Mass Spectroscopy 

ESI-MS data for complexes 4-6 were collected with cone voltages of 10V and 35 V.  

The predominant features in the spectra of 4-6 are that of the [(SNS)Cu]2+ ion.  For 

complexes 4-6, these findings suggest that two chloride ligands are displaced in the mass 

spectrometer and that the tridentate ligand remains coordinated to the copper(II) ion.  The 

isotopic pattern in the mass spectrometry data fits the assigned structure. 

 

EPR Spectroscopy 
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 The EPR samples of the copper complexes were prepared by dissolving 3 mg of the 

copper complex in 1 mL of dry methanol. The complexes were stored at room 

temperature prior to analysis. The spectra were collected as frozen glass after flash 

freezing the samples in liquid N2. All three spectra are typical anisotropic Cu(II) signals 

with four hyperfine splittings in the lower-field region (g||) and g-values consistent with 

previously reported copper complexes from the literature.[44-46]  

Figure 4 shows experimental (black graph) and simulated (blue graph) frozen 

glass EPR spectrum of 6 at 10 K using a Bruker X-band ELEXSYS E500 spectrometer 

equipped with an ESR900 continuous flow liquid helium cryostat. EPR spectra were 

collected at X-band, 2 mW microwave power, and 1 gauss modulation amplitude.  

A locally developed program known as doublet,[47] was used to simulate the 

frozen-glass EPR spectrum at 10 K based on the standard spin Hamiltonian of an S=½ 

system. Resonance fields are calculated by diagonalization of the energy matrix. 

Temperature does not affect the S=1/2 spectra in a way it affects the high-spin spectra, 

thus temperature was not used as a varying parameter in the simulation. The simulation 

was carried out with different values of g and A until a match was found. The final 

simulation yielded the parameters g along with the hyperfine structure A where  g║= gZ  

and g┴ = (gX + gY)/2.  Simulated line widths are 12 gauss for both the y and z component 

and 15 gauss for the x component in compound 6.   
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Figure 4.  Simulated (blue) and experimental (black) frozen glass EPR spectra of 6 at 9.4 
GHz and 10 K. 
	
 

The simulated parameters for 6, (I = 3/2 signal) are gx = 2.0822; gy = 2.0997;  gz = 

2.4330; and Az = 112 Gauss. 

 

ATR-IR Spectroscopy 

Attenuated total reflectance IR spectra were collected for 4-6.  All compounds present 

unique IR spectra.  Previously, we reported the C=S stretching frequencies for the ligand 

precursors 1a-c at 1126 cm-1 [1] and for 3b to be 1149 cm-1.[2]   This stretch was absent 

in the corresponding copper complexes.   
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UV-Vis Spectroscopy 

 Complexes 4-6 were characterized with UV-Visible spectroscopy.  A 

representative UV-Vis spectrum for complexes 4 is included below in figure 5.  Given 

the d9 electron configuration of Cu(II) complexes, d-to-d transitions are possible.    The 

spectroscopic features for complexes 4-6 are summarized in table 5. 

 

Figure 5.  UV-Vis absorption spectrum of 4 (0.49 mM) in methanol. 

 

 

 

 

 

 

 

Table 5. Spectroscopic features of Complexes 4-6 



	 26	

Complex λ1 Δ (cm-1) ε (M-1cm-1) 

4 581 1.72�104 110 

 

5 571 1.75�104 4.0 x 102 

6 578 1.73�104 18 

 

The UV-vis spectra of 4-6 clearly show d-to-d transitions.  Complexes 4-6 have a 

d-to-d transition between 581nm-571nm.  Complexes 4-6 all exhibit ligand-to-metal 

charge-transfer (Cl− → CuII or S  → CuII LMCT) transitions between 310nm-200nm. 

Extinction coefficients for complexes 4-6 ligand-to-metal charge-transfer transitions 

range from 2500-25,800 M-1cm-1.  

 

Cyclic Voltammetry 

Compound 6 was studied by cyclic voltammetry in DMSO as part of its 

characterization.  The cyclic voltammogram for 6 (Figure 6) shows oxidation features at 

1576, and 1709 mV, and reduction waves at 1526 and -509 mV.  The oxidation and 

reduction waves are broad and located at the same potential across consecutive scans.   

This cyclic voltammogram is representative of an irreversible process.  We reported 

previously that ligand precursor 1 shows oxidation feature at 1289 mV and a reduction 

wave at -2376 mV.[1]  This profile shows that the complex is stable across the oxidation 

and reduction cycle. 
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Figure 6.  Cyclic Voltammogram  of 6 in DMSO (5.6 mM) with 0.2 M TBAF.  The scan 

rate was 100 mV/s with ferrocene (E1/2 = 400 mV) used as an internal standard. 

 

Electronic Structure Analysis: Influence of SNS Ligand Set in Determining 

Coordination Environment and Copper Oxidation State 

Given our recently reported three-coordinate Cu(I)-SNS systems and the five-

coordinate Cu(II)-SNS complexes in our current study, it is evident that fine-tuning of the 

SNS ligand set affects the oxidation state and the coordination environment of the metal 

ion.  We therefore are interested in understanding the factors that give rise to these 

differently constituted systems and have used Gaussian 03 to examine the effects that the 

constraints inherent to our ligand sets have on the electronic structures of these systems. 

As part of our analysis of the three-coordinate Cu(I)-SNS complexes, we obtained 

the cyclic voltammograms on these systems and desired to investigate computationally 
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their observed one-electron oxidations.[35]  Doing so required that geometry 

optimizations be performed on each cationic Cu(I) system and also on the corresponding 

one-electron oxidized dicationic Cu(II) counterpart in order to calculate the energy 

difference between these two states.  Shown in Figure 7 are the computed structures for 

the C2-symmetric N-methyl-substituted thiotriazolyl-based three-coordinate Cu(I) and 

Cu(II) systems that were obtained as part of that work.  In Table 6 are presented the 

various bond lengths and angles in these two structures. 

 

 

Figure 7.  Ground-state optimized structures for the cationic N-methyl-substituted, 

triazolyl-based Cu(I) [(SNS)Cu]+ system and its one-electron oxidized Cu(II) counterpart. 

 

 

 

 

Table 6.  Optimized structural parameters for the cationic N-methyl-substituted, 

thiotriazolyl-based Cu(I) [(SNS)Cu]+ system and its one-electron oxidized Cu(II) 

counterpart. 
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[(SNS)Cu]+ 

(crystal 
structures) 

[(SNS)Cu]+ 
(Gaussian 03) 

[(SNS)Cu]2+ 
(Gaussian 03) 

Calculated 
change upon 

oxidation 
Cu-N 2.005-2.012Å 1.990Å 1.969Å -0.021Å 
Cu-S 2.198-2.225Å 2.242Å 2.210Å -0.032Å 

N-Cu-S 117.5-120.5º 119.9º 108.0º -11.9º 
S-Cu-S 119.9-123.6º 120.1º 144.1º 24.0º 

 

The calculated changes in metal-ligand bond lengths and angles resulting from the 

one-electron oxidation present an interesting story regarding the expected structural 

changes that occur with this electrochemically induced change in Cu oxidation state.  As 

can be seen from the bond angles determined from the crystal structures and from the 

geometry optimization of the Cu(I) system, the coordination environment about the Cu 

center is quite close to that of a regular trigonal planar system.  The methylene linkers in 

the SNS ligand set allow the S atoms to be oriented such that the N-Cu-S and S-Cu-S 

angles are quite close to 120º.  Not surprisingly, the Cu-N and Cu-S bond lengths are 

calculated to become shorter with an increase in the Cu oxidation state.  These changes 

are on the order of several hundredths of an Ångstrom whereas the changes in the N-Cu-

S and S-Cu-S angles are more substantial.  The S-Cu-S angle increases by 24.0º with a 

concomitant decrease in the N-Cu-S angle by 11.9º.  The calculated S-Cu-S angle of 

144.1º is intermediate what would be expected for trigonal planar (120º) and T-shaped 

(180º) configurations.  Shown in Table 7 is similar computed data for the thioimidazolyl-

based Cu-SNS system.  The expected changes in bond lengths and angles are quite 

similar to what was calculated for the thiotriazolyl-containing complex. 
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Table 7.  Optimized structural parameters for the cationic N-methyl-substituted, 

thioimidazolyl-based Cu(I) [(SNS)Cu]+ system and its one-electron oxidized Cu(II) 

counterpart. 

 [(SNS)Cu]+ 
(Gaussian 03) 

[(SNS)Cu]2+ 
(Gaussian 03) 

Calculated 
change upon 

oxidation 
Cu-N 1.991Å 1.978Å -0.013Å 
Cu-S 2.239Å 2.203Å -0.036Å 

N-Cu-S 119.6º 109.2º -10.4º 
S-Cu-S 120.8º 141.7º 20.9º 

 

Removing the methylene linker from the ligand set and performing a geometry 

optimization on such a structure provides a clue as to why we have had no success in 

preparing a three-coordinate Cu(I) complex with an SNS ligand that does not contain 

such a CH2 unit.  In Table 8 are summarized the optimized metal-ligand bond lengths and 

angles for three three-coordinate, N-methyl-substituted, and (for continuity with the 

immediately preceding discussion with and our work in [35]) thiotriazolyl-containing 

systems: a Cu(I) complex with the CH2 linker, a Cu(I) structure without the linker, and a 

Cu(II) system without the linker; the optimized structure for the hypothetical three-

coordinate Cu(I) complex without methylene linkers is shown in Figure 8.  Although the 

calculated Cu-S bond length varies relatively little throughout these permutations, the Cu-

N length changes quite dramatically between the Cu(I) systems.  With the methylene 

linker included, the calculated Cu-N bond length is 1.990Å; without it, the distance is 

2.308Å, an increase of 0.318Å caused merely by the removal of two methylene units 

from between the pyridinyl and thiotriazolyl moieties.  The S-Cu-S bond angle also 

increases significantly to nearly 170º.  Removal of an electron to generate a Cu(II) 

complex allows the Cu-N and Cu-S bond lengths to shorten relative to the analogous 



	 31	

bond lengths found for the Cu(I) system with the linker, as would be expected on 

increasing the oxidation state from Cu(I) to Cu(II), while simultaneously maintaining the 

relatively large S-Cu-S bond length of 160.6º. 

These changes in metal-ligand bond lengths and angles can be directly attributed 

to the change in orbital character in the highest occupied molecular orbitals (HOMOs) of 

these systems upon removal of the linkers.  These molecular orbitals are presented in 

Figure 9 for the hypothetical Cu(I) systems with and without the methylene linkers.  For 

the d10 Cu(I) metal centers, these HOMOs are electronically doubly occupied, contain 

what could be termed as Cu dx2-y2 character, and are both strongly Cu-N σ* antibonding.  

The presence of the methylene linker allows the N-Cu-S angle to be close to 120º, 

thereby allowing the Cu-S orbital interaction to be simultaneously weakly Cu-S σ 

bonding and Cu-S σ* antibonding as can be observed in the contour plot.  Removal of the 

methylene linker forces the N-Cu-S bond angle to near 90º as a result of bonding 

constraints within the SNS ligand set.  As a result, the HOMO becomes strongly Cu-N 

and Cu-S σ* antibonding, an effect that is manifested in a considerably elongated Cu-N 

bond (2.308Å).  Removal of an electron from this molecular orbital for the system 

without the linker eases this occupied antibonding interaction somewhat.   
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Table 8.  Gaussian 03-optimized structural parameters for three three-coordinate, N-

methyl-substituted, and thiotriazolyl-containing Cu-SNS systems. 

 Cu(I) and with 
CH2 linker 

Cu(I) and 
without CH2 

linker 

Cu(II) and 
without CH2 

linker 
Cu-N 1.990Å 2.308Å 1.973Å 
Cu-S 2.242Å 2.179Å 2.207Å 

N-Cu-S 119.9º 95.1º 99.7º 
S-Cu-S 120.1º 169.8º 160.6º 

 

 

 

Figure 8.  Optimized structure of a hypothetical three-coordinate Cu(I) [(SNS)Cu]+ 

system in which there are no methylene linkers within the ligand set. 
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Figure 9.  HOMOs of the model three-coordinate, N-methyl-substituted, thiotriazolyl-

containing Cu(I) [(SNS)Cu]+ systems with (left) and without (right) methylene linkers 

connecting the pyridinyl and thiotriazolyl moieties of the tridentate ligand. 

 

The conclusion that we draw from these computations is that a d9 Cu(II) metal 

center is better situated than a d10 Cu(I) center to bind one of our tridentate SNS ligand 

sets when it does not contain an internal CH2 group.  Without the methylene linker, the 

SNS ligand forces the N and S atoms into a T-shaped arrangement around the metal 

center.  The Cu(II) systems prepared in the current study exemplify this finding.  

Complexes 4, 5, and 6 possess five-coordinate, not three-coordinate Cu(II) ions, but the 

SNS ligand is arranged as in the hypothetical T-shaped Cu(II) system: the S atoms are 

located in the axial positions and the pyridinyl N atom occupies one of the three 

equatorial sites to give S-Cu-S and N-Cu-S bond angles of approximately 170º and 85º, 

respectively .  Coordination of two chlorides ensures that the metal center is Cu(II), not 

Cu(I).  The relationship between these two coordination environments can be further 

emphasized by noting the similarity of the SNS ligand orientations in the five-coordinate 

structures in Figures 1, 2, and 3 and of the hypothetical three-coordinate structure shown 

in Figure 8. 
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Conclusions 

  A series of novel SNS-coordinated copper(II) compounds has been prepared and 

characterized through the use of our own imidazolyl-based tridentate ligand systems. 

Based on X-ray crystal structures, the five-coordinate copper(II) complexes possess 

pseudo-square pyramidal geometry at the metal center.   The EPR spectra of these 

systems are consistent with typical anisotropic copper(II) signals with four hyperfine 

splittings in the lower-field region (g||) and g-values consistent with previously reported 

copper complexes from the literature.   In the electronic spectra, d-to-d transitions and 

various charge-transfer transitions are apparent. We performed computational studies to 

understand the influence that structural constraints internal to our tridentate SNS ligand 

precursors have on the oxidation state of the resulting bound copper complex.  We 

learned that a d9 copper(II) metal center is better situated than a d10 copper(I) center to 

bind one of our tridentate SNS ligand sets when it does not contain an internal CH2 

group.  Without the methylene linker, the SNS ligand forces the N and S atoms into 

where they would be found in a T-shaped system.   

 

Appendix 1. Supplementary data 

CCDC 955935 contains the supplementary crystallographic data for 4. 

CCDC 955937 contains the supplementary crystallographic data for 5. 

CCDC 955936 contains the supplementary crystallographic data for 6. 

 

These data can be obtained free of charge via 
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http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: 

(+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. 
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