62 research outputs found

    Big data simulations for capacity improvement in a general ophthalmology clinic

    Get PDF
    PURPOSE Long total waiting times (TWT) experienced by patients during a clinic visit have a significant adverse effect on patient's satisfaction. Our aim was to use big data simulations of a patient scheduling calendar and its effect on TWT in a general ophthalmology clinic. Based on the simulation, we implemented changes to the calendar and verified their effect on TWT in clinical practice. DESIGN AND METHODS For this retrospective simulation study, we generated a discrete event simulation (DES) model based on clinical timepoints of 4.401 visits to our clinic. All data points were exported from our clinical warehouse for further processing. If not available from the electronic health record, manual time measurements of the process were used. Various patient scheduling models were simulated and evaluated based on their reduction of TWT. The most promising model was implemented into clinical practice in 2017. RESULTS During validation of our simulation model, we achieved a high agreement of mean TWT between the real data (229 ± 100 min) and the corresponding simulated data (225 ± 112 min). This indicates a high quality of the simulation model. Following the simulations, a patient scheduling calendar was introduced, which, compared with the old calendar, provided block intervals and extended time windows for patients. The simulated TWT of this model was 153 min. After implementation in clinical practice, TWT per patient in our general ophthalmology clinic has been reduced from 229 ± 100 to 183 ± 89 min. CONCLUSION By implementing a big data simulation model, we have achieved a cost-neutral reduction of the mean TWT by 21%. Big data simulation enables users to evaluate variations to an existing system before implementation into clinical practice. Various models for improving patient flow or reducing capacity loads can be evaluated cost-effectively

    A framework to analyze argumentative knowledge construction in computer-supported collaborative learning

    Get PDF
    Computer-supported collaborative learning (CSCL) is often based on written argumentative discourse of learners, who discuss their perspectives on a problem with the goal to acquire knowledge. Lately, CSCL research focuses on the facilitation of specific processes of argumentative knowledge construction, e.g., with computer-supported collaboration scripts. In order to refine process-oriented instructional support, such as scripts, we need to measure the influence of scripts on specific processes of argumentative knowledge construction. In this article, we propose a multi-dimensional approach to analyze argumentative knowledge construction in CSCL from sampling and segmentation of the discourse corpora to the analysis of four process dimensions (participation, epistemic, argumentative, social mode)

    Compact Hardware Implementations of the SHA-3 Candidates ARIRANG, BLAKE, Grøstl, and Skein

    Get PDF
    The weakening of the widely used SHA-1 hash function has also cast doubts on the strength of the related algorithms of the SHA-2 family. The US NIST has therefore initiated the SHA-3 competition in order to select a modern hash function algorithm as a ``backup\u27\u27 for SHA-2. This algorithm should be efficiently implementable both in software and hardware under different constraints. In this paper, we present hardware implementations of the four SHA-3 candidates ARIRANG, BLAKE, Grøstl, and Skein with the primary constraint of minimizing chip area

    Classical meets malignant hematology: a case of acquired εγδβ-thalassemia in clonal hematopoiesis

    Get PDF
    Hemoglobinopathies including thalassemias are among the most frequent genetic disorders worldwide. Primarily, these entities result from germline variants in the globin gene clusters and their cis-acting regulatory elements, and thus the WHO classifies thalassemias as inherited diseases. Non-inherited disorders of globin chain synthesis mimicking the phenotype of thalassemias have also been described and are referred to as acquired thalassemias. These forms mainly affect the alpha-globin genes and are observed at much lower frequencies..

    The cross-sectional GRAS sample: A comprehensive phenotypical data collection of schizophrenic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schizophrenia is the collective term for an exclusively clinically diagnosed, heterogeneous group of mental disorders with still obscure biological roots. Based on the assumption that valuable information about relevant genetic and environmental disease mechanisms can be obtained by association studies on patient cohorts of ≥ 1000 patients, if performed on detailed clinical datasets and quantifiable biological readouts, we generated a new schizophrenia data base, the GRAS (Göttingen Research Association for Schizophrenia) data collection. GRAS is the necessary ground to study genetic causes of the schizophrenic phenotype in a 'phenotype-based genetic association study' (PGAS). This approach is different from and complementary to the genome-wide association studies (GWAS) on schizophrenia.</p> <p>Methods</p> <p>For this purpose, 1085 patients were recruited between 2005 and 2010 by an invariable team of traveling investigators in a cross-sectional field study that comprised 23 German psychiatric hospitals. Additionally, chart records and discharge letters of all patients were collected.</p> <p>Results</p> <p>The corresponding dataset extracted and presented in form of an overview here, comprises biographic information, disease history, medication including side effects, and results of comprehensive cross-sectional psychopathological, neuropsychological, and neurological examinations. With >3000 data points per schizophrenic subject, this data base of living patients, who are also accessible for follow-up studies, provides a wide-ranging and standardized phenotype characterization of as yet unprecedented detail.</p> <p>Conclusions</p> <p>The GRAS data base will serve as prerequisite for PGAS, a novel approach to better understanding 'the schizophrenias' through exploring the contribution of genetic variation to the schizophrenic phenotypes.</p
    corecore