325 research outputs found

    On the contribution of Aitken mode particles to cloud droplet populations at continental background areas ? a parametric sensitivity study

    Get PDF
    International audienceAitken mode particles are potentially an important source of cloud droplets in continental background areas. In order to find out which physico-chemical properties of Aitken mode particles are most important regarding their cloud-nucleating ability, we applied a global sensitivity method to an adiabatic air parcel model simulating the number of cloud droplets formed on Aitken mode particles, CD2. The technique propagates uncertainties in the parameters describing the properties of Aitken mode to CD2. The results show that if the Aitken mode particles do not contain molecules that are able to reduce the particle surface tension more than 30% and/or decrease the mass accommodation coefficient of water, ?, below 10?2, the chemical composition and modal properties may have roughly an equal importance at low updraft velocities characterized by maximum supersaturations CD2 exhibits largest sensitivity to the particle number concentration, followed by the particle size. Also the shape of the particle mode, characterized by the geometric standard deviation (GSD), can be as important as the mode mean size at low updraft velocities. Finally, the performed sensitivity analysis revealed also that the chemistry may dominate the total sensitivity of CD2 to the considered parameters if: 1) the value of ? varies at least one order of magnitude more than what is expected for pure water surfaces (10?2?1), or 2) the particle surface tension varies more than roughly 30% under conditions close to reaching supersaturation

    Aerosol-Cloud Interaction Determined by Both in Situ and Satellite Data Over a Northern High-Latitude Site

    Get PDF
    The first aerosol indirect effect over a clean, northern high-latitude site was investigated by determining the aerosol cloud interaction (ACI) using three different approaches; ground-based in situ measurements, combined ground-based in situ measurements 5 and satellite retrievals and using only satellite retrievals. The obtained values of ACI were highest for in situ ground-based data, clearly lower for combined ground-based and satellite data, and lowest for data relying solely on satellite retrievals. One of the key findings of this study was the high sensitivity of ACI to the definition of the aerosol burden. We showed that at least a part of the variability in ACI can be explained by 10 how different investigators have related dierent cloud properties to "aerosol burden"

    CCN activation and cloud processing in simplified sectional aerosol models with low size resolution

    No full text
    International audienceWe investigate the influence of low size resolution, typical to sectional aerosol models in large scale applications, on cloud droplet activation and cloud processing of aerosol particles. A simplified cloud scheme with five approaches to determine the fraction of activated particles is compared with a detailed reference model under different atmospheric conditions. In general, activation approaches which assume a distribution profile within the critical model size sections predict the cloud droplet concentration most accurately under clean and moderately polluted conditions. In such cases, the deviation from the reference simulations is below 15% except for very low updraft velocities. In highly polluted cases, the concentration of cloud droplets is significantly overestimated due to the inability of the simplified scheme to account for the kinetic limitations of the droplet growth. Of the profiles examined, taking into account the local shape of the particle size distribution is the most accurate although in most cases the shape of the profile has little relevance. While the low resolution cloud model cannot reproduce the details of the out-of-the-cloud aerosol size distribution, it captures well the amount of sulphate produced in aqueous-phase reactions as well as the distribution of the sulphate between the cloud droplets. Overall, the simplified cloud scheme with low size resolution performs well for clean and moderately polluted regions that cover most of the Earth's surface and is therefore suitable for large scale models

    Evaluation of convective boundary layer height estimates using radars operating at different frequency bands

    Get PDF
    Knowledge of the atmospheric boundary layer state and evolution is important for understanding air pollution and low-level cloud development, among other things. There are a number of instruments and methods that are currently used to estimate boundary layer height (BLH). However, no single instrument is capable of providing BLH measurements in all weather conditions. We proposed a method to derive a daytime convective BLH using clear air echoes in radar observations and investigated the consistency of these retrievals between different radar frequencies. We utilized data from three vertically pointing radars that are available at the SMEAR II station in Finland, i.e. the C band (5 GHz), Ka band (35 GHz) and W band (94 GHz). The Ka- or W-band cloud radars are an integral part of cloud profiling stations of pan-European Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS). Our method will be utilized at ACTRIS stations to serve as an additional estimate of the BLH during summer months. During this period, insects and Bragg scatter are often responsible for clear air echoes recorded by weather and cloud radars. To retrieve a BLH, we suggested a mechanism to separate passive and independently flying insects that works for all analysed frequency bands. At the lower frequency (the C band) insect scattering has been separated from Bragg scattering using a combination of the radar reflectivity factor and linear depolarization ratio. Retrieved values of the BLH from all radars are in a good agreement when compared to the BLH obtained with the co-located HALO Doppler lidar and ERA5 reanalysis data set. Our method showed some underestimation of the BLH after nighttime heavy precipitation yet demonstrated a potential to serve as a reliable method to obtain a BLH during clear-sky days. Additionally, the entrainment zone was observed by the C-band radar above the CBL in the form of a Bragg scatter layer. Aircraft observations of vertical profiles of potential temperature and water vapour concentration, collected in the vicinity of the radar, demonstrated some agreement with the Bragg scatter layer.Peer reviewe

    Measurements of optical properties of atmospheric aerosols in Northern Finland

    Get PDF
    International audienceThree years of continuous measurements of aerosol optical properties and simultaneous aerosol number size distribution measurements at Pallas GAW station, a remote subarctic site in the northern border of the boreal forest zone, have been analysed. The scattering coefficient at 550 nm varied from 0.2 to 94.4 Mm?1 with an average of 7.1±8.6 Mm?1. Both the scattering and backscattering coefficients had a clear seasonal cycle with an autumn minimum and a 4?5 times higher summer maximum. The scattering was dominated by submicron aerosols and especially so during late summer and autumn. The Ångström exponent had a clear seasonal pattern with maximum values in late summer and minimum values during wintertime. The highest hemispheric backscattering fraction values were observed in autumn, indicating clean air with few scattering particles and a particle size distribution strongly dominated by ultrafine particles. To analyse the influence of air mass origin on the aerosol optical properties a trajectory climatology was applied to the Pallas aerosol data. The most polluted trajectory patterns represented air masses from the Kola Peninsula, Scandinavia and Russia as well as long-range transport from Britain and Eastern Europe. These air masses had the largest average scattering and backscattering coefficients for all seasons. Higher than average values of the Ångström exponent were also observed in connection with transport from these areas

    Production of neutral molecular clusters by controlled neutralization of mobility standards

    Get PDF
    Measuring aerosols and molecular clusters below the 3 nm size limit is essential to increase our understanding of new particle formation. Instruments for the detection of sub-3 nm aerosols and clusters exist and need to be carefully calibrated and characterized. So far calibrations and laboratory tests have been carried out using mainly electrically charged aerosols, as they are easier to handle experimentally. However, the charging state of the cluster is an important variable to take into account. Furthermore, instrument characterization performed with charged aerosols could be biased, preventing a correct interpretation of data when electrically neutral sub-3 nm aerosols are involved. This article presents the first steps to generate electrically neutral molecular clusters as standards for calibration. We show two methods: One based on the neutralization of well-known molecular clusters (mobility standards) by ions generated in a switchable aerosol neutralizer. The second is based on the controlled neutralization of mobility standards with mobility standards of opposite polarity in a recombination cell. We highlight the challenges of these two techniques and, where possible, point out solutions. In addition, we give an outlook on the next steps toward generating well-defined neutral molecular clusters with a known chemical composition and concentration.Peer reviewe

    Parameterization of ion-induced nucleation rates based on ambient observations

    Get PDF
    Atmospheric ions participate in the formation of new atmospheric aerosol particles, yet their exact role in this process has remained unclear. Here we derive a new simple parameterization for ion-induced nucleation or, more precisely, for the formation rate of charged 2-nm particles. The parameterization is semi-empirical in the sense that it is based on comprehensive results of one-year-long atmospheric cluster and particle measurements in the size range ~1–42 nm within the EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions) project. Data from 12 field sites across Europe measured with different types of air ion and cluster mobility spectrometers were used in our analysis, with more in-depth analysis made using data from four stations with concomitant sulphuric acid measurements. The parameterization is given in two slightly different forms: a more accurate one that requires information on sulfuric acid and nucleating organic vapor concentrations, and a simpler one in which this information is replaced with the global radiation intensity. These new parameterizations are applicable to all large-scale atmospheric models containing size-resolved aerosol microphysics, and a scheme to calculate concentrations of sulphuric acid, condensing organic vapours and cluster ions

    The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales

    No full text
    International audienceThe contribution of boundary layer (BL) nucleation events to total particle concentrations on the global scale has been studied by including a new particle formation mechanism in a global aerosol microphysics model. The mechanism is based on an analysis of extensive observations of particle formation in the BL at a continental surface site. It assumes that molecular clusters form at a rate proportional to the gaseous sulfuric acid concentration to the power of 1. The formation rate of 3 nm diameter observable particles is controlled by the cluster formation rate and the existing particle surface area, which acts to scavenge condensable gases and clusters during growth. Modelled sulfuric acid vapour concentrations, particle formation rates, growth rates, coagulation loss rates, peak particle concentrations, and the daily timing of events in the global model agree well with observations made during a 22-day period of March 2003 at the SMEAR II station in Hyytiälä, Finland. The nucleation bursts produce total particle concentrations (>3 nm diameter) often exceeding 104 cm?3, which are sustained for a period of several hours around local midday. The predicted global distribution of particle formation events broadly agrees with what is expected from available observations. Over relatively clean remote continental locations formation events can sustain mean total particle concentrations up to a factor of 8 greater than those resulting from anthropogenic sources of primary organic and black carbon particles. However, in polluted continental regions anthropogenic primary particles dominate particle number and formation events lead to smaller enhancements of up to a factor of 2. Our results therefore suggest that particle concentrations in remote continental regions are dominated by nucleated particles while concentrations in polluted continental regions are dominated by primary particles. The effect of BL particle formation over tropical regions and the Amazon is negligible. These first global particle formation simulations reveal some interesting sensitivities. We show, for example, that significant reductions in primary particle emissions may lead to an increase in total particle concentration because of the coupling between particle surface area and the rate of new particle formation. This result suggests that changes in emissions may have a complicated effect on global and regional aerosol properties. Overall, our results show that new particle formation is a significant component of the aerosol particle number budget

    The analysis of size-segregated cloud condensation nuclei counter (CCNC) data and its implications for cloud droplet activation

    Get PDF
    Ambient aerosol, CCN (cloud condensation nuclei) and hygroscopic properties were measured with a size-segregated CCNC (cloud condensation nuclei counter) in a boreal environment of southern Finland at the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) II station. The instrumental setup operated at five levels of supersaturation <i>S</i> covering a range from 0.1–1% and measured particles with a size range of 20–300 nm; a total of 29 non-consecutive months of data are presented. The median critical diameter <i>D</i><sub>c</sub> ranged from 150 nm at <i>S</i> of 0.1% to 46 nm at <i>S</i> of 1.0%. The median aerosol hygroscopicity parameter &kappa; ranged from 0.41 at <i>S</i> of 0.1% to 0.14 at <i>S</i> of 1.0%, indicating that ambient aerosol in Hyytiälä is less hygroscopic than the global continental or European continental averages. It is, however, more hygroscopic than the ambient aerosol in an Amazon rainforest, a European high Alpine site or a forested mountainous site. A fairly low hygroscopicity in Hyytiälä is likely a result of a large organic fraction present in the aerosol mass comparative to other locations within Europe. A considerable difference in particle hygroscopicity was found between particles smaller and larger than ~100 nm in diameter, possibly pointing out to the effect of cloud processing increasing &kappa; of particles > 100 nm in diameter. The hygroscopicity of the smaller, ~50 nm particles did not change seasonally, whereas particles with a diameter of ~150 nm showed a decreased hygroscopicity in the summer, likely resulting from the increased VOC emissions of the surrounding boreal forest and secondary organic aerosol (SOA) formation. For the most part, no diurnal patterns of aerosol hygroscopic properties were found. Exceptions to this were the weak diurnal patterns of small, ~50 nm particles in the spring and summer, when a peak in hygroscopicity around noon was observed. No difference in CCN activation and hygroscopic properties was found on days with or without atmospheric new particle formation. During all seasons, except summer, a CCN-inactive fraction was found to be present, rendering the aerosol of 75–300 nm in diameter as internally mixed in the summer and not internally mixed for the rest of the year
    • …
    corecore