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Abstract. Three years of continuous measurements of
aerosol optical properties and simultaneous aerosol number
size distribution measurements at Pallas GAW station, a re-
mote subarctic site in the northern border of the boreal for-
est zone, have been analysed. The scattering coefficient at
550 nm varied from 0.2 to 94.4 Mm−1 with an average of
7.1±8.6 Mm−1. Both the scattering and backscattering coef-
ficients had a clear seasonal cycle with an autumn minimum
and a 4–5 times higher summer maximum. The scattering
was dominated by submicron aerosols and especially so dur-
ing late summer and autumn. TheÅngstr̈om exponent had
a clear seasonal pattern with maximum values in late sum-
mer and minimum values during wintertime. The highest
hemispheric backscattering fraction values were observed in
autumn. To analyse the influence of air mass origin on the
aerosol optical properties a trajectory climatology was ap-
plied to the Pallas aerosol data. The most polluted trajec-
tory patterns represented air masses from the Kola Peninsula,
Scandinavia and Russia as well as long-range transport from
Britain and Eastern Europe. These air masses had the largest
average scattering and backscattering coefficients for all sea-
sons. Higher than average values of theÅngstr̈om exponent
were also observed in connection with transport from these
areas.

1 Introduction

There is a growing evidence that the Earth’s radiation budget,
and thus climate, is affected through radiative forcing caused
by changes in the concentration and composition of aerosol
particles (Lohmann and Feichter, 2005; Ramanathan et al.,
2001; Charlson et al., 1999; Hansen et al., 1997). However,
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owing to their high spatial and temporal variability (seasonal
dust storms or biomass burning), the globally and annually
averaged climatic forcing by aerosols is associated with large
uncertainties (IPCC, 2001).

Aerosol optical properties and their relation to other
aerosol properties are key factors in investigating the di-
rect radiative effects by atmospheric aerosols. The most im-
portant particles in this respect are submicron accumulation
mode particles (Charlson et al., 1999). However, supermi-
cron sea salt and dust may also have an important role in
scattering in certain conditions (O’Dowd and Smith, 1993).
Measurements concerning aerosol optical properties have
been made in the marine boundary layer (e.g. Hegg et al.,
1996), at a few coastal sites (e.g. O’Dowd and Smith, 1993;
Sheridan and Ogren, 1999; Delene and Ogren, 2002; Ander-
son et al., 1999), in the free troposphere (e.g. Sheridan and
Ogren, 1999), in Arctic regions (e.g. Virkkula et al., 1998;
Treffeisen et al., 2004; Beine et al., 1996), and in areas with
a high sulfate burden (e.g. Koloutsou-Vakakis et al., 2001;
Delene and Ogren, 2002). High Arctic aerosol loadings,
i.e. Arctic haze, have also been investigated (e.g. Treffeisen
et al., 2004; Heintzenberg et al., 2003; Beine et al., 1996).
In addition to field measurements, aerosol optical properties
have been studied with airborne in-situ measurements as well
as from satellites (e.g. Bodhaine et al., 1991; Kaufman et al.,
2002).

Although the optical properties of particles with different
size have been studied widely, there is still a need for mea-
surements from remote or moderately polluted areas. In this
study we present results from simultaneous aerosol scatter-
ing and size distribution measurements conducted at a remote
continental subarctic site. The data covers three years of con-
tinuous measurements. Our purpose is to illustrate 1) how
the aerosol optical properties (scattering and backscattering
coefficients,Ångstr̈om exponent, hemispheric backscatter-
ing fraction) vary seasonally and with air mass origin, and
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Fig. 1. Location of the Pallas GAW station in Northern Finland.

2) how the optical properties are related to the properties of
measured aerosol number size distributions.

2 Instrumentation and methods

2.1 Site description

The Finnish Meteorological Institute (FMI) has participated
in the Global Atmosphere Watch (GAW) programme since
1994 and maintains the Pallas-Sodankylä GAW station. The
main measuring station (Fig. 1, 67◦58′ N, 24◦07′ E) is lo-
cated on a top of fjeld (an Arctic hill) Sammaltunturi, at the
height of 560 m above sea level, and ca. 300 m above the sur-
rounding area. The measuring site is very suitable for tro-
pospheric measurements due to the absence of large local
and regional pollution sources. The distance to the nearest
town, Muonio, with some 2500 inhabitants, is 19 km to the
west. The second nearest town, Kittilä (6000 inhabitants) is
46 km to the south-east. The closest major pollution sources
are the smelters Nikel and Montshegorsk in Russia, located
about 350 km away from Pallas, Nikel to the northeast and
Montshegorsk to the east. A detailed description on the site
is given by Hatakka et al. (2003).

2.2 Instrumentation

The scattering (σ sp) and backscattering coefficients (σ bsp)
were measured with an integrating nephelometer (model
3563, TSI, Inc., St. Paul, Minnesota). The measurements at
Pallas have been going on continuously since February 2000.

The instrument measures scattering (σ sp) and backscatter-
ing coefficients (σ bsp) in three wavelengths, 450, 550, and
700 nm. The instrument illuminates the sample volume from
the side and measures the light scattered by aerosol particles
and gas molecules in the direction of the photomultiplier tube
integrating the scattering over angle of 7–170◦. The instru-
ment is described in detail by Anderson et al. (1996) and
Bodhaine et al. (1991). Calibration of the nephelometer is
carried out at least twice per year by using CO2 (purity 4.0)
as high span gas and filtered air as low span gas. The averag-
ing time is set to 5 min. The zero signal is measured once an
hour.

The inlet of the main sampling line is about 3 m above the
roof of the measurement station building, about 7 m above
the ground. Calculated (Baron and Willeke, 2001) cut off
diameter of the inlet nozzle and sample transport lines was
about 5µm. More detailed description of the inlet system is
found in Komppula et al. (2005).

The sample air is heated to station indoor temperature
(about 20◦C) prior to entering the nephelometer. The heater
inside the nephelometer was not activated until December
2003. The heater decreases condensation inside the mea-
surement chamber. Before turning the heater on, the mean
relative humidity (RH) was 18±10%, the maximum hourly
meanRH being 60%. After turning the heater on, the mean
RH was 9±3% and the maximum hourly meanRH was 23%.

The particle number size distribution in the range 7–
500 nm was measured with a Differential Mobility Parti-
cle Sizer (DMPS). Continuous DMPS measurements were
started on 13 April 2000. The instrument and measuring ar-
rangements have been described in detail by Komppula et
al. (2003).

The total aerosol number concentration was measured
with a Condensation Particle Counter (CPC, TSI model
3010). These measurements have been going on since 28
June 1996. The CPC measures particles larger than about
10 nm. Concentration of particles larger than 0.5µm was
measured with a Laser Particle Counter (LPC, TSI model
7550) between October 1998 and April 2004. The instru-
ment measures number concentration of aerosol particles in
two size channels,Dp>0.5µm andDp>5.0µm. The upper
channel could not be used in the analysis because of the cut
off in the transport line.

Other measurements in Pallas include trace gas measure-
ments and meteorological parameters. In this analysis we
used SO2 concentration as well as visibility measured with
a Vaisala FD12P weather sensor. The detection limit of the
SO2 measurements, carried out with Thermo Electron 43 S,
is 0.1µg m−3. The meteorological measurements are made
with an automatic weather station (Hatakka et al., 2003).

2.3 Data processing

Measurement data were analysed for the period from 9
November 2001 to 9 November 2004. The data associated
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with abnormal peaks, calibrations or visits at the station were
rejected, as were also the cases when the zero mode was not
activated, values when theRH inside the nephelometer ex-
ceeded 40%, or the station was inside clouds.

Nonidealities due to nonlambertian and truncation errors
were corrected using the method described by Anderson and
Ogren (1998). Nonlambertian errors are most important for
sub-micron particles whereas truncation errors are most im-
portant for>1µm particles (Anderson and Ogren, 1998).
Nonlambertian error is the slightly noncosine-weighted in-
tensity distribution of illumination light provided by the opal
glass diffusor of the nephelometer. Truncation error is the ge-
ometrical blockage of near-forward-scattered light for angles
below about 7◦.

For 5-min averages applied here, the detection limits for
total scattering coefficients are 0.44, 0.17, and 0.26 Mm−1

for 450, 550, and 700 nm, respectively (Anderson et al.,
1996). For backscattering, the detection limits are 0.29, 0.11,
and 0.21 Mm−1 for 450, 550, and 700 nm, respectively. Val-
ues below these detection limits were excluded. Hourly av-
erages were calculated from valid results.

TheÅngstr̈om exponent,̊a, is defined as the negative slope
of the logarithm of scattering coefficient as a function of
wavelength and is given byσ sp=Kλ–å, whereK is a con-
stant. In practice,̊a is calculated from the equation

å = −
logσsp (700 nm) − logσsp (550 nm)

log 700− log 550
. (1)

A largeÅngstr̈om exponent implies an aerosol size distribu-
tion with scattering dominated by submicron particles, while
a distribution dominated by coarse particles has typically
smallerå. The hemispheric backscattering fraction,b, was
obtained fromb=σ bsp/σ sp.

2.4 Cluster analysis

To analyse the influence of air-mass origin on the opti-
cal aerosol measurements at Pallas, three-dimensional 5-day
back-trajectories arriving at 925 hPa were calculated, using
the kinematic model FLEXTRA (Stohl and Wotawa, 1995;
Stohl and Koffi, 1998; Stohl et al., 1999). The model utilizes
meteorological data from the European Centre for Medium
Range Weather Forecasts (ECMWF). The calculations were
performed twice daily (00:00 and 12:00 UTC) during the pe-
riod 1997–2003, resulting in a data set of 5112 trajectories.

The trajectories were classified into different flow patterns
with the use of cluster analysis. Cluster analysis denotes a va-
riety of multivariate techniques used to group similar objects
together, whereby differences between individual elements
within a cluster are minimized but differences between clus-
ters are maximized (Romesburg, 1984). In the present study
the Ward’s minimum variance technique was used, provided
in a Matlab standard statistical package. Seven transport pat-
terns, representing the atmospheric flow to Pallas during the
7-year period 1997–2003, were identified. The clustering
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Fig. 2. Time-series ofσ sp at 550 nm.

procedure and the resulting trajectory climatology are de-
scribed in detail by Eneroth et al. (2005).

3 Results and discussion

3.1 General features

Figure 2 shows daily mean scattering coefficientsσ sp at
550 nm covering the whole measurement period. The value
of σ sp varies widely – more than two orders of magnitude.
This variation is embedded in the consistent seasonal cycle
discussed below. Gaps in the data are mainly due to burned
lamp or maintenance.

Statistical properties of the hourly mean values of the
measured and calculated parameters are presented in Ta-
ble 1. Based on three years of hourly averaged data,σ sp at
550 nm varied in the range 0.2–94.4 Mm−1 with an average
of 7.1 Mm−1 and a standard deviation (STD) of 8.6 Mm−1.
These values are comparable to those measured at other Arc-
tic sites, including three years of measurements in Barrow,
Alaska (Delene and Ogren, 2002) and measurements made
in spring 1994 in Ny-̊Alesund, Svalbard (Beine et al., 1996).
Much larger, typically 1–2 orders of magnitude, scattering
coefficients have been measured in sites affected by urban or
continental pollution (e.g. Cabada et al., 2004; Vrekoussis et
al., 2005).

The seasonal variation of various optical parameters can
best be seen from the monthly-average data, which is shown
in Fig. 3. Both the scattering and backscattering coefficients
display a clear seasonal cycle with an autumn minimum and
a 4–5 times higher summer maximum. These two parame-
ters started to rise early in spring, reaching their highest val-
ues in summer. After July the values decreased very rapidly
and stayed relative constant during the autumn. The au-
tumn scattering minimum may be related to the fact that both
cloudiness and precipitation have their maximum in autumn,
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Table 1. Statistics of aerosol optical parameters. The averages are expressed as arithmetic means (AM), and variations as standard deviations
(STD). Scattering and backscattering coefficients are given in unit Mm−1, while DMPS and LPC number concentrations are given in
particles cm−3. SO2 concentrations are given inµg/m3.

Percentiles

Parameter N AM STD 10 50 90 99

σsp(450 nm) 13 357 10.2 12.6 1.5 5.5 24.7 65.3
σsp(550 nm) 13 381 7.1 8.6 1.0 3.9 16.8 44.4
σsp(700 nm) 13 325 4.6 5.5 0.6 2.7 10.7 26.9
σbsp(450 nm) 12 833 1.2 1.2 0.4 0.7 2.6 6.4
σbsp(550 nm) 13 263 0.9 1.0 0.2 0.5 2.1 5.1
σbsp(700 nm) 12 428 0.9 0.9 0.3 0.6 1.9 4.5
å550/450 nm 13 349 1.7 0.6 0.9 1.8 2.4 3.2
å700/450 nm 13 280 1.8 0.7 0.8 1.8 2.7 3.9
å700/550 nm 13 311 1.8 1.0 0.6 1.8 3.1 4.7
b450 nm 12 823 0.1 0.1 0.1 0.1 0.2 0.5
b550 nm 13 261 0.1 0.1 0.1 0.1 0.2 0.4
b700 nm 12 419 0.2 0.1 0.1 0.2 0.3 0.6
Ntotal 11 151 764 736 94 528 1783 3132
Nnucl 11 151 145 283 10 48 366 1410
Naitken 11 151 375 464 31 206 979 2007
Naccum 11 151 243 310 29 118 644 1436
N100−200 nm 11 224 173 238 17 74 482 1066
N200−300 nm 11 224 56 74 5 30 138 366
N300−400 nm 11 224 14 19 1 6 36 98
N400−500 nm 11 204 4 5 0 2 9 26
N>100 nm 11 189 247 320 29 119 650 1474
N>200 nm 11 189 73 96 7 38 181 488
N>300 nm 11 189 17 24 2 8 45 123
N>500 nm, LPC 10 505 2 2 0 1 4 9
SO2 12 901 0.5 1.3 0.0 0.2 1.0 4.9

and therefore the air is expected to be cleaner. The scattering
coefficient usually reached its maximum in July and mini-
mum in October. The backscattering coefficient behaved in
the same way, though with lower absolute values. At Barrow,
Alaska,σ sp was lowest in summer and highest (10–15 times
higher than summer values) in winter (Delene and Ogren,
2002). High values at Barrow in winter are related to a winter
maximum in submicron sulfate aerosol and sea-salt aerosol
mass concentration, indicating periods of Arctic haze as well
as high sea-salt mass concentrations.

The Ångstr̈om exponent also had a clear seasonal varia-
tion with a minimum in spring and a 2–4 times higher maxi-
mum in late summer. Based on the absolute values ofå, we
conclude that scattering is dominated by submicron aerosols
in Pallas, and especially so during late summer and autumn.
The hemispheric backscattering fractionb at 550 nm varied
by roughly a factor two between the months but does not
show a consistent seasonal pattern.

3.2 Relationships between the measured quantities

The scattering and backscattering coefficients were found
to be strongly correlated to each other. The ratio of these
two quantities, the hemispheric backscattering fractionb,
was also found to be dependent on the magnitude ofσ sp

(Fig. 4). Forσ sp>1 Mm−1, the value ofb decreased grad-
ually with increasingσ sp, being mostly below 0.2 when
σ sp>10 Mm−1. This kind of pattern is consistent with ob-
servations made by Delene and Ogren (2002) at four dif-
ferent sites in Northern America. Interestingly,b started to
increase very rapidly with decreasingσ sp in very clean air
(σ sp<1 Mm−1). A closer look at the particle size distribu-
tion data revealed that these cases were characterized by very
low accumulation mode particle number concentrations, as
well as a particle size distribution strongly dominated by ul-
trafine particles. This observation agrees with the fact that as
particles get smaller (<100 nm), their backscattering fraction
increases substantially (e.g. Seinfeld and Pandis, 1998).

Figure 5 displaysσ sp as a function of the particle number
concentration in different modes, including the accumulation
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Fig. 3. Monthly average values of(a) σ sp at three wavelengths,(b) σ bsp at three wavelengths,(c) å and(d) b at 550 nm. Blue triangles,
green circles and red squares correspond toσ sp andσ bsp values at 450 nm, 550 nm, and 700 nm, respectively.

mode (particle diameter 95–500 nm), aitken mode (25–
95 nm) and nucleation mode (7–25 nm). Aerosol particles
in the accumulation mode have the highest scattering effi-
ciency at measured wavelengths. This can be seen as a clear
correlation betweenσ sp and the number concentration of ac-
cumulation mode particles (Fig. 5a). The relation between
σ sp and the number concentration of nucleation mode par-
ticles displays an envelope type pattern (Fig. 5b), with high
values ofσ sp being always associated with low nucleation
mode particle number concentration and vice versa. This
kind of behaviour can be explained in two ways: 1) no ma-
jor primary sources (such as traffic emissions) for nucleation
mode particles observed at Pallas exist, and 2) atmospheric
new-particle formation at Pallas takes place only in clean
air masses originating from the North Atlantic or the Arc-
tic Ocean (Komppula et al., 2003). The connection between
σ sp and aitken mode reminds that betweenσ sp and nucle-
ation mode, even though the envelope type pattern is less
clear (Fig. 5c). No clear connection betweenσ sp and total
particle number concentration could be seen (Fig. 5d).
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Fig. 4. Relation betweenσ sp andb at 550 nm.
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Fig. 5. Relation betweenσ sp at 550 nm and(a) accumulation mode,(b) nucleation mode,(c) aitken mode and(d) total particle number
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Fig. 6. Relation betweenσ sp at 550 nm and concentration of(a) >200 nm particles,(b) >300 nm particles,(c) 300–400 nm particles
measured with DMPS and(d) >500 nm particles measured with LPC.

The scattering coefficientσ sp correlated strongly with the
particle number concentration measured by the LPC (Fig. 6d,

R2=0.71), which is consistent with the results by Virkkula
et al. (1998) at another Finnish Arctic site. This correlation
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is higher than that ofσ sp with the number concentration of
accumulation mode particles (R2=0.60), but lower than that
of σ sp with 400–500 nm particles (R2=0.87) or with 300–
400 nm particles (Fig. 6c, R2=0.92). By looking at particles
larger than a certain threshold size, rather than by looking at
specific size ranges, a complementary picture emerges. For
example, the correlation betweenσ sp and>200 nm particles
was 0.85 (Fig. 6a), that betweenσ sp and>300 nm particles
was 0.93 (Fig. 6b), and that betweenσ sp and>400 nm parti-
cles was 0.87. No correlation could be seen betweenσ sp and
concentration of 100–200 nm particles. Probably most of the
particles in the accumulation mode are too small to effec-
tively scatter the atmospheric radiation in the visible range.
When using the backscattering coefficient instead of scatter-
ing coefficient, a behaviour similar to that in Figs. 5 and 6
was observed.

The highest values ofσ sp (>40 Mm−1) were observed
in air with Ångstr̈om exponents̊a in the range 1.3–2.3 and
with SO2 concentrations typically smaller than a fewµg/m3

(Fig. 7). This indicates that these episodes were dominated
by submicron particles from various combustion sources.
The largest regional pollution source affecting Northern Fin-
land is the Kola Peninsula industrial area some 350 km east
from Pallas. During periods of air mass transport from this
area the highest SO2 concentrations (>10µg/m3) are ob-
served at Pallas (Virkkula et al., 1998; Ruuskanen et al.,
2003). Although higher than averages, the values ofσ sp were
mostly below 10 Mm−1 in air clearly affected by Kola Penin-
sula sources. Taken together, these things suggest that the
episodes showing the highest values of scattering are associ-
ated with long-range transported particulate pollution origi-
nating from Central or Eastern Europe rather than by local or
regional pollution.

Fig. 8. Transport paths to Pallas illustrated by cluster mean trajec-
tories, denoted 1–7. Percent occurrence of trajectories within each
cluster as well as the average trajectory lengths in the different clus-
ters are indicated in the figure.

3.3 Long-range transport

Figure 8 shows the calculated climatology for trajectories
arriving at Pallas at 925 hPa. The clusters are depicted by
mean trajectories. The cluster mean represents the average
pathway of trajectories in that cluster and describes potential
source areas within a 5-day transport time to Pallas. Each
cluster is assigned an identification number (1–7). Clus-
ters 3–5 represent transport across the Arctic Basin, clus-
ters 2 and 6 from the Eurasian continent, and clusters 1 and
7 from the Atlantic. The mean trajectory length for each
of the clusters is shown in Fig. 8. The highest mean wind
speeds, i.e. the longest trajectories, are found in connection
with transport over the Atlantic (clusters 1 and 7). Clusters 2,
4 and 6 are associated with the lowest mean wind speeds.
Figure 8 also shows the mean frequency of occurrence of
the transport clusters. However, this frequency of occurrence
co-varies with the seasonal changes of the general circulation
patterns (Eneroth et al., 2005).

To study the influence of long-range atmospheric trans-
port on the observed optical aerosol properties at Pallas, the
aerosol data were correlated with cluster membership. The
data was divided into seven separate groups according to the
trajectory climatology. The mean value of the hourly means
between±1 h of the arrival time of the trajectory was calcu-
lated and used in the analysis.

In terms of aerosol properties, the cleanest air conditions
were associated with clusters 3 and 7 containing trajectories
originating from the Arctic Ocean and the North Atlantic, re-
spectively. These clusters had the lowest average scattering
and backscattering coefficients (σ sp at 550 nm for clusters 3
and 7 were 3.2±3.3 Mm−1 and 4.0±3.4 Mm−1, respectively)
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Fig. 9. Box whisker diagrams of the monthly variation ofσ sp at 550 nm (top),̊a (middle) andb at 550 nm (bottom) for clusters 6 and 3. The
box has a horizontal line at the lower quartile, median and upper quartile values. The whiskers are lines extending from each end of the box
to show the 10th and 90th percentiles. The curve shows the median value of all data, regardless of transport pattern.

as well as accumulation mode particle number concentra-
tions for all seasons. The same clusters also showed high nu-
cleation mode particle number concentrations during spring
and late summer, which is an indication of new particle for-
mation (Komppula et al., 2003). The most polluted condi-
tions were associated with cluster 1 representing air mass
transport from Scandinavia and Britain, and cluster 6, repre-
senting air mass transport from Russia and Eastern Europe.
Cluster 6 also includes trajectories from the polluted Kola

Peninsula area. Clusters 1 and 6 showed the largest aver-
age scattering and backscattering coefficients (σ sp at 550 nm
were 12.2±16.8 Mm−1 and 16.2±9.1 Mm−1, respectively)
as well as the largest accumulation mode particle number
concentrations for all seasons. Furthermore, these clusters
were associated with year-round low nucleation mode parti-
cle number concentrations.

Figure 9 shows monthly variations ofσ sp at 550 nm,̊a as
well asb at 550 nm for clusters 6 and 3, illustrating polluted
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and clean air conditions at Pallas, respectively. From Fig. 9 it
can be seen that the̊Angstr̈om exponent has a clear seasonal
pattern for all clusters, with maximum values in autumn and
minimum values during winter. The high autumn values of
å could possible be related to the maximum cloud frequency
observed in Pallas at that time of the year. When clouds are
present, the relative amount of large sea-salt and dust parti-
cles is likely to be reduced, causing an increase in the value
of å. On average, the values ofå were found to be somewhat
higher in connection with clusters 1, 2 and 6 compared to the
other transport patterns. This may be due to the dominance
of submicron pollution-related particles in these air masses.
The highest values of the hemispheric backscattering fraction
was observed in autumn for all clusters. No clear linkage be-
tween atmospheric circulation and the observed aitken mode
and total particle number concentrations was found.

4 Summary and conclusions

Three years of continuous measurements of aerosol opti-
cal properties have been analysed at Pallas GAW station, a
remote subarctic site in the northern border of the boreal
forest zone. The measurements were analysed as a func-
tion of aerosol size distribution and atmospheric long-range
transport. The seasonal variation of the data was also stud-
ied. The scattering coefficient at 550 nm varied from 0.2 to
94.4 Mm−1 with an average of 7.1±8.6 Mm−1. Both the
scattering and backscattering coefficients had a clear sea-
sonal cycle with an autumn minimum and 4–5 times higher
summer maximum. Also the̊Angstr̈om exponent varied over
the year, having a minimum in spring and 2–4 times higher
maximum values in late summer. The scattering was domi-
nated by submicron aerosols in Pallas, and especially so dur-
ing late summer and autumn. The ratio between the backscat-
tering and scattering coefficients was very high at small scat-
tering coefficients. These cases were characterized by very
low accumulation mode particle number concentrations, as
well as particle size distributions strongly dominated by ul-
trafine particles.

The scattering coefficient correlated strongly with the
number concentration of accumulation mode particles, and
even better with the subset of particle larger than about 200–
300 nm in diameter. The relation betweenσ sp and nucleation
mode particle number concentration displayed an envelope
type pattern, with high values ofσ sp being associated with
low nucleation mode particle number concentration and vice
versa. This kind of behaviour is due to the fact that atmo-
spheric new-particle formation at Pallas takes place only in
clean air masses originating from the North Atlantic or the
Arctic Ocean.

Aerosol data was inspected in terms of trajectory clusters,
each of which representing different regions of air masses
origin. The cleanest air mass conditions were observed in
connection with trajectories coming from the Arctic Ocean

and the North Atlantic, showing the lowest average scattering
and backscattering coefficients as well as the lowest accumu-
lation mode particle number concentrations all year-round.
The most polluted air masses were associated with air mass
transport from the Kola Peninsula, Scandinavia and Russia
as well as Britain and Eastern Europe. These trajectory clus-
ters had the largest average scattering and backscattering co-
efficients as well as the largest accumulation mode particle
number concentrations for all the seasons.

Our results demonstrate very clearly that the aerosol opti-
cal properties, and especially their relation to each other, are
strongly dependent on the aerosol number size distribution.
In remote locations both particle number concentration
and size distribution are highly variable. The main reason
for this is the important role of long-range transportation,
which is responsible for elevated aerosol concentrations and
allows the modification of the aerosol size distribution by
secondary aerosol formation, aerosol-cloud interactions and
deposition processes. Taken together, these things indicate
that understanding the climatic effects of aerosols over
remote locations is not possible without the simultaneous
measurement of both optical and physical/chemical proper-
ties of the aerosols.

Edited by: Y. Rudich
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