18 research outputs found
Differentiation of Prostate Cancer from Normal Tissue in Radical Prostatectomy Specimens by Desorption Electrospray Ionization and Touch Spray Ionization Mass Spectrometry.
Radical prostatectomy is a common treatment option for prostate cancer before it has spread beyond the prostate. Examination for surgical margins is performed post-operatively with positive margins reported to occur in 6.5 – 32% of cases. Rapid identification of cancerous tissue during surgery could improve surgical resection. Desorption electrospray ionization (DESI) is an ambient ionization method which produces mass spectra dominated by lipid signals directly from prostate tissue. With the use of multivariate statistics, these mass spectra can be used to differentiate cancerous and normal tissue. The method was applied to 100 samples from 12 human patients to create a training set of MS data. The quality of the discrimination achieved was evaluated using principal component analysis - linear discriminant analysis (PCA-LDA) and confirmed by histopathology. Cross validation (PCA-LDA) showed >95% accuracy. An even faster and more convenient method, touch spray (TS) mass spectrometry, not previously tested to differentiate diseased tissue, was also evaluated by building a similar MS data base characteristic of tumor and normal tissue. An independent set of 70 non-targeted biopsies from six patients was then used to record lipid profile data resulting in 110 data points for an evaluation dataset for TS-MS. This method gave prediction success rates measured against histopathology of 93%. These results suggest that DESI and TS could be useful in differentiating tumor and normal prostate tissue at surgical margins and that these methods should be evaluated intra-operatively
Ambient ionization mass spectrometric analysis of human surgical specimens to distinguish renal cell carcinoma from healthy renal tissue
Touch spray - mass spectrometry (TS-MS) is an ambient ionization technique (ionization of unprocessed samples in the open air) that may find intraoperative applications in quickly identifying the disease state of cancerous tissues and in defining surgical margins. In this study, TS-MS was performed on fresh kidney tissue (~1–5 cm3), within one hour of resection, from 21 human subjects afflicted by renal cell carcinoma (RCC). The preliminary diagnostic value of TS-MS data taken from freshly resected tissue was evaluated. Principal component analysis (PCA) of the negative ion mode (m/z 700–1000) data provided separation between RCC (16 samples) and healthy renal tissue (13 samples). Linear discriminant analysis (LDA) on the PCA compressed data estimated sensitivity (true positive rate) and specificity (true negative rate) of 98% and 95%, respectively, based on histopathological evaluation. The results indicate that TS-MS might provide rapid diagnostic information in spite of the complexity of unprocessed kidney tissue and the presence of interferences such as urine and blood. Desorption electrospray ionization imaging (DESI-MSI) in the negative ionization mode was performed on the tissue specimens after TS-MS analysis as a reference method. The DESI imaging experiments provided phospholipid profiles (m/z 700–1000) that also separated RCC and healthy tissue in the PCA space, with PCA-LDA sensitivity and specificity of 100% and 89%, respectively. The TS and DESI loading plots indicated that different ions contributed most to the separation of RCC from healthy renal tissue (m/z 794 [PC 34:1+Cl]− and 844 [PC 38:4+Cl]− for TS vs. m/z 788 [PS 36:1-H]− and 810 [PS 38:4-H]− for DESI), while m/z 885 ([PI 38:4-H]−) was important in both TS and DESI. The prospect, remaining hurdles, and future work required for translating TS-MS into a method of intraoperative tissue diagnosis is discussed.