339 research outputs found

    Hole escape processes detrimental to photoluminescence efficiency in a blue InGaN multiple-quantum-well diode under reverse bias conditions

    Get PDF
    Photoluminescence (PL) properties of a blue In0.3Ga0.7N multiple-quantum-well (MQW) diode with an additional n+-doped In0.18Ga0.82N electron reservoir layer (ERL) have been investigated at 20 K as a function of reverse bias under indirect barrier excitation. A PL intensity ratio of MQW/ERL is observed to be significantly quenched by increasing the reverse field due to electron-hole separation and carrier escape, in spite of observed blueshifts, when the excitation power is decreased by two orders of magnitude. The PL intensity reduction suggests that the hole escape process plays an important role for determination of the PL efficiency under the reverse bias

    Discovery of a new pulsating X-ray source with a 1549.1-s period, AX J183220-0840

    Full text link
    A new pulsating X-ray source, AX J183220-0840, with a 1549.1-s period was discovered at R.A.= 18h32m20s and Dec.=-8d40'30'' (J2000, uncertainty=0.6degree) during an ASCA observation on the Galactic plane. The source was observed two times, in 1997 and in 1999. A phase-averaged X-ray flux of 1.1E-11 ergs cm-2 s-1 and pulsation period of 1549.1+/-0.4 s were consistently obtained from these two observations. The X-ray spectrum was represented by a flat absorbed power-law with a photon-index of =~0.8 and an absorption column density of =~1.3E22 cm-2. Also, a signature of iron K-shell line emission with a centroid of 6.7 keV and an equivalent width of approximately 450 eV was detected. From the pulsation period and the iron-line feature, AX J183220-0840 is likely to be a magnetic white dwarf binary with a complexly absorbed thermal spectrum with a temperature of about 10 keV.Comment: 13 pages, 4 figures, accepted for publication in ApJ Letter

    Spinal motor neurite outgrowth over glial scar inhibitors is enhanced by coculture with bone marrow stromal cells

    Get PDF
    Background context Transplantation of bone marrow cells into spinal cord lesions promotes functional recovery in animal models, and recent clinical trials suggest possible recovery also in humans. The mechanisms responsible for these improvements are still unclear. Purpose To characterize spinal cord motor neurite interactions with human bone marrow stromal cells (MSCs) in an in vitro model of spinal cord injury (SCI). Study design/setting Previously, we have reported that human MSCs promote the growth of extending sensory neurites from dorsal root ganglia (DRG), in the presence of some of the molecules present in the glial scar, which are attributed with inhibiting axonal regeneration after SCI. We have adapted and optimized this system replacing the DRG with a spinal cord culture to produce a central nervous system (CNS) model, which is more relevant to the SCI situation. Methods We have developed and characterized a novel spinal cord culture system. Human MSCs were cocultured with spinal motor neurites in substrate choice assays containing glial scar-associated inhibitors of nerve growth. In separate experiments, MSC-conditioned media were analyzed and added to spinal motor neurites in substrate choice assays. Results As has been reported previously with DRG, substrate-bound neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth, but these inhibitory effects were abrogated in MSC/spinal cord cocultures. However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition to substrates of myelin-associated glycoprotein. In addition, the MSC secretome contained numerous neurotrophic factors that stimulated spinal neurite outgrowth, but these were not sufficient stimuli to promote spinal neurite extension over inhibitory concentrations of neurocan or Nogo-A. Conclusions These findings provide novel insight into how MSC transplantation may promote regeneration and functional recovery in animal models of SCI and in the clinic, especially in the chronic situation in which glial scars (and associated neural inhibitors) are well established. In addition, we have confirmed that this CNS model predominantly comprises motor neurons via immunocytochemical characterization. We hope that this model may be used in future research to test various other potential interventions for spinal injury or disease states

    Direct observation of miniband-edge singularities in the optical spectra of GaAs/AlAs superlattices.

    Get PDF
    Band-edge optical transitions in GaAs/AlAs superlattices with different miniband widths are investigated by low-temperature-photocurrent, photoluminescence-excitation, and reflectance spectroscopy. Direct spectroscopic evidence is given for excitonic effects at saddle-type critical points which are related to M1{\mathit{M}}_{1} Van Hove singularities at the upper miniband edges, for both heavy-hole and light-hole excitons. Excellent agreement is obtained between the observed transition energies and the miniband widths deduced from Kronig-Penney model calculations

    P-Process Nucleosynthesis inside Supernova-Driven Supercritical Accretion Disks

    Get PDF
    We investigate p-process nucleosynthesis in a supercritical accretion disk around a compact object of 1.4 M_solar, using the self-similar solution of an optically thick advection dominated flow. Supercritical accretion is expected to occur in a supernova with fallback material accreting onto a new-born compact object. It is found that appreciable amounts of p-nuclei are synthesized via the p-process in supernova-driven supercritical accretion disks (SSADs) when the accretion rate m_dot = M_dot c^2/(16 L_Edd) >10^5, where L_Edd is the Eddington luminosity. Abundance profiles of p-nuclei ejected from SSADs have similar feature to those of the oxygen/neon layers in Type II supernovae when the abundance of the fallback gas far from the compact object is that of the oxygen/neon layers in the progenitor. The overall abundance profile is in agreement with that of the solar system. Some p-nuclei, such as Mo, Ru, Sn, and La, are underproduced in the SSADs as in Type II supernovae. If the fallback gas is mixed with a small fraction of proton through Rayleigh-Taylor instability during the explosion, significant amounts of Mo92 are produced inside the SSADs. Ru96 and La138 are also produced when the fallback gas contains abundant proton though the overall abundance profile of p-nuclei is rather different from that of the solar system. The p-process nucleosynthesis in SSADs contributes to chemical evolution of p-nuclei, in particular Mo92, if several percents of fallback matter are ejected via jets and/or winds.Comment: 15 pages, 7 figures included, 3 tables, LaTeX emulateapj5.sty, accepted for publication by the Astronomical Journal (March, 2003

    Investigation into O(N) Invariant Scalar Model Using Auxiliary-Mass Method at Finite Temperature

    Get PDF
    Using auxiliary-mass method, O(N) invariant scalar model is investigated at finite temperature. This mass and an evolution equation allow us to calculate an effective potential without an infrared divergence. Second order phase transition is indicated by the effective potential. The critical exponents are determined numerically.Comment: LaTex 8 pages with 3 eps figure

    Theory of Current-Induced Breakdown of the Quantum Hall Effect

    Full text link
    By studying the quantum Hall effect of stationary states with high values of injected current using a von Neumann lattice representation, we found that broadening of extended state bands due to a Hall electric field occurs and causes the breakdown of the quantum Hall effect. The Hall conductance agrees with a topological invariant that is quantized exactly below a critical field and is not quantized above a critical field. The critical field is proportional to B3/2B^{3/2} and is enhanced substantially if the extended states occupy a small fraction of the system.Comment: 5 pages, RevTeX, final version to appear in PR

    The Type Ic Hypernova SN 2002ap

    Get PDF
    Photometric and spectroscopic data of the energetic Type Ic supernova (SN) 2002ap are presented, and the properties of the SN are investigated through models of its spectral evolution and its light curve. The SN is spectroscopically similar to the "hypernova" SN 1997ef. However, its kinetic energy [(410)×1051\sim (4-10) \times 10^{51} erg] and the mass ejected (2.5-5 MM_{\odot}) are smaller, resulting in a faster-evolving light curve. The SN synthesized 0.07M\sim 0.07 M_{\odot} of 56^{56}Ni, and its peak luminosity was similar to that of normal SNe. Brightness alone should not be used to define a hypernova, whose defining character, namely very broad spectral features, is the result of a high kinetic energy. The likely main-sequence mass of the progenitor star was 20-25 MM_{\odot}, which is also lower than that of both hypernovae SNe 1997ef and 1998bw. SN 2002ap appears to lie at the low-energy and low-mass end of the hypernova sequence as it is known so far. Observations of the nebular spectrum, which is expected to dominate by summer 2002, are necessary to confirm these values.Comment: 10 pages, 4 figures, accepted for publication in ApJL, 30 April 2002 (minor changes to match the accepted version, with figures being colored

    Convergence in phosphorus constraints to photosynthesis in forests around the world

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The photosynthesis and leaf nutrient data reported in the paper are available at https://doi.org/10.6084/m9.figshare.20010485.v1, and the model results are available on the European open-access repository Zenodo at https://doi.org/10.5281/zenodo.6619615. All other data reported in the paper are presented in the supplementary materials.Code availability: The R code used for analyses is at https://github.com/ellswor2/photo_p_repo2.git. The source code for ORCHIDEE is at https://doi.org/10.14768/20200407002.1.Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements

    Mucin-hypersecreting bile duct neoplasm characterized by clinicopathological resemblance to intraductal papillary mucinous neoplasm (IPMN) of the pancreas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although intraductal papillary mucinous neoplasm (IPMN) of the pancreas is acceptable as a distinct disease entity, the concept of mucin-secreting biliary tumors has not been fully established.</p> <p>Case presentation</p> <p>We describe herein a case of mucin secreting biliary neoplasm. Imaging revealed a cystic lesion 2 cm in diameter at the left lateral segment of the liver. Duodenal endoscopy revealed mucin secretion through an enlarged papilla of Vater. On the cholangiogram, the cystic lesion communicated with bile duct, and large filling defects caused by mucin were observed in the dilated common bile duct. This lesion was diagnosed as a mucin-secreting bile duct tumor. Left and caudate lobectomy of the liver with extrahepatic bile duct resection and reconstruction was performed according to the possibility of the tumor's malignant behavior. Histological examination of the specimen revealed biliary cystic wall was covered by micropapillary neoplastic epithelium with mucin secretion lacking stromal invasion nor ovarian-like stroma. The patient has remained well with no evidence of recurrence for 38 months since her operation.</p> <p>Conclusion</p> <p>It is only recently that the term "intraductal papillary mucinous neoplasm (IPMN)," which is accepted as a distinct disease entity of the pancreas, has begun to be used for mucin-secreting bile duct tumor. This case also seemed to be intraductal papillary neoplasm with prominent cystic dilatation of the bile duct.</p
    corecore