9 research outputs found

    Tapping into non-English-language science for the conservation of global biodiversity.

    Get PDF
    The widely held assumption that any important scientific information would be available in English underlies the underuse of non-English-language science across disciplines. However, non-English-language science is expected to bring unique and valuable scientific information, especially in disciplines where the evidence is patchy, and for emergent issues where synthesising available evidence is an urgent challenge. Yet such contribution of non-English-language science to scientific communities and the application of science is rarely quantified. Here, we show that non-English-language studies provide crucial evidence for informing global biodiversity conservation. By screening 419,679 peer-reviewed papers in 16 languages, we identified 1,234 non-English-language studies providing evidence on the effectiveness of biodiversity conservation interventions, compared to 4,412 English-language studies identified with the same criteria. Relevant non-English-language studies are being published at an increasing rate in 6 out of the 12 languages where there were a sufficient number of relevant studies. Incorporating non-English-language studies can expand the geographical coverage (i.e., the number of 2° × 2° grid cells with relevant studies) of English-language evidence by 12% to 25%, especially in biodiverse regions, and taxonomic coverage (i.e., the number of species covered by the relevant studies) by 5% to 32%, although they do tend to be based on less robust study designs. Our results show that synthesising non-English-language studies is key to overcoming the widespread lack of local, context-dependent evidence and facilitating evidence-based conservation globally. We urge wider disciplines to rigorously reassess the untapped potential of non-English-language science in informing decisions to address other global challenges. Please see the Supporting information files for Alternative Language Abstracts

    Complete Genome Sequence of the Dehalorespiring Bacterium Desulfitobacterium hafniense Y51 and Comparison with Dehalococcoides ethenogenes 195

    No full text
    Desulfitobacterium strains have the ability to dechlorinate halogenated compounds under anaerobic conditions by dehalorespiration. The complete genome of the tetrachloroethene (PCE)-dechlorinating strain Desulfitobacterium hafniense Y51 is a 5,727,534-bp circular chromosome harboring 5,060 predicted protein coding sequences. This genome contains only two reductive dehalogenase genes, a lower number than reported in most other dehalorespiring strains. More than 50 members of the dimethyl sulfoxide reductase superfamily and 30 paralogs of the flavoprotein subunit of the fumarate reductase are encoded as well. A remarkable feature of the genome is the large number of O-demethylase paralogs, which allow utilization of lignin-derived phenyl methyl ethers as electron donors. The large genome reveals a more versatile microorganism that can utilize a larger set of specialized electron donors and acceptors than previously thought. This is in sharp contrast to the PCE-dechlorinating strain Dehalococcoides ethenogenes 195, which has a relatively small genome with a narrow metabolic repertoire. A genomic comparison of these two very different strains allowed us to narrow down the potential candidates implicated in the dechlorination process. Our results provide further impetus to the use of desulfitobacteria as tools for bioremediation

    National trends in the outcomes of subarachnoid haemorrhage and the prognostic influence of stroke centre capability in Japan: retrospective cohort study

    No full text
    Objectives To examine the national, 6-year trends in in-hospital clinical outcomes of patients with subarachnoid haemorrhage (SAH) who underwent clipping or coiling and the prognostic influence of temporal trends in the Comprehensive Stroke Center (CSC) capabilities on patient outcomes in Japan.Design Retrospective study.Setting Six hundred and thirty-one primary care institutions in Japan.Participants Forty-five thousand and eleven patients with SAH who were urgently hospitalised, identified using the J-ASPECT Diagnosis Procedure Combination database.Primary and secondary outcome measures Annual number of patients with SAH who remained untreated, or who received clipping or coiling, in-hospital mortality and poor functional outcomes (modified Rankin Scale: 3–6) at discharge. Each CSC was assessed using a validated scoring system (CSC score: 1–25 points).Results In the overall cohort, in-hospital mortality decreased (year for trend, OR (95% CI): 0.97 (0.96 to 0.99)), while the proportion of poor functional outcomes remained unchanged (1.00 (0.98 to 1.02)). The proportion of patients who underwent clipping gradually decreased from 46.6% to 38.5%, while that of those who received coiling and those left untreated gradually increased from 16.9% to 22.6% and 35.4% to 38%, respectively. In-hospital mortality of coiled (0.94 (0.89 to 0.98)) and untreated (0.93 (0.90 to 0.96)) patients decreased, whereas that of clipped patients remained stable. CSC score improvement was associated with increased use of coiling (per 1-point increase, 1.14 (1.08 to 1.20)) but not with short-term patient outcomes regardless of treatment modality.Conclusions The 6-year trends indicated lower in-hospital mortality for patients with SAH (attributable to better outcomes), increased use of coiling and multidisciplinary care for untreated patients. Further increasing CSC capabilities may improve overall outcomes, mainly by increasing the use of coiling. Additional studies are necessary to determine the effect of confounders such as aneurysm complexity on outcomes of clipped patients in the modern endovascular era

    Prognostic Impact of Left Ventricular Ejection Fraction in Patients With Severe Aortic Stenosis

    No full text
    corecore