6 research outputs found

    13C-metabolic flux analysis of ethanol-assimilating Saccharomyces cerevisiae for S-adenosyl-l-methionine production

    No full text
    Abstract Background Saccharomyces cerevisiae is a host for the industrial production of S-adenosyl-l-methionine (SAM), which has been widely used in pharmaceutical and nutritional supplement industries. It has been reported that the intracellular SAM content in S. cerevisiae can be improved by the addition of ethanol during cultivation. However, the metabolic state in ethanol-assimilating S. cerevisiae remains unclear. In this study, 13C-metabolic flux analysis (13C-MFA) was conducted to investigate the metabolic regulation responsible for the high SAM production from ethanol. Results The comparison between the metabolic flux distributions of central carbon metabolism showed that the metabolic flux levels of the tricarboxylic acid cycle and glyoxylate shunt in the ethanol culture were significantly higher than that of glucose. Estimates of the ATP balance from the 13C-MFA data suggested that larger amounts of excess ATP was produced from ethanol via increased oxidative phosphorylation. The finding was confirmed by the intracellular ATP level under ethanol-assimilating condition being similarly higher than glucose. Conclusions These results suggest that the enhanced ATP regeneration due to ethanol assimilation was critical for the high SAM accumulation

    Functional Significance and Morphological Characterization of Starvation-Induced Autophagy in the Adult Heart

    No full text
    To examine the functional significance and morphological characteristics of starvation-induced autophagy in the adult heart, we made green fluorescent protein-microtubule-associated protein 1-light chain 3 (LC3) transgenic mice starve for up to 3 days. Electron microscopy revealed round, homogenous, electron-dense lipid droplet-like vacuoles that initially appeared in cardiomyocytes as early as 12 hours after starvation; these vacuoles were identified as lysosomes based on cathepsin D-immunopositive reactivity and acid phosphatase activity. The increase in the number of lysosomes depended on the starvation interval; typical autophagolysosomes with intracellular organelles also appeared, and their numbers increased at the later phases of starvation. Myocardial expression of autophagy-related proteins, LC3-II, cathepsin D, and ubiquitin, increased, whereas both myocardial ATP content and starvation integral decreased. Treatment with bafilomycin A1, an autophagy inhibitor, did not affect cardiac function in normally fed mice but significantly depressed cardiac function and caused significant left ventricular dilatation in mice starved for 3 days. The cardiomyocytes were occupied with markedly accumulated lysosomes in starved mice treated with bafilomycin A1, and both the myocardial amino acid content, which was increased during starvation, and the myocardial ATP content were severely decreased, potentially contributing to cardiac dysfunction. The present findings suggest a critical role of autophagy in the maintenance of cardiac function during starvation in the adult
    corecore