80 research outputs found

    Photoacid behaviour in a fluorinated green fluorescent protein chromophore:Ultrafast formation of anion and zwitterion states

    Get PDF
    The photophysics of the chromophore of the green fluorescent protein in Aequorea victoria (avGFP) are dominated by an excited state proton transfer reaction. In contrast the photophysics of the same chromophore in solution are dominated by radiationless decay, and photoacid behaviour is not observed. Here we show that modification of the pKa of the chromophore by fluorination leads to an excited state proton transfer on an extremely fast (50 fs) time scale. Such a fast rate suggests a barrierless proton transfer and the existence of a pre-formed acceptor site in the aqueous solution, which is supported by solvent and deuterium isotope effects. In addition, at lower pH, photochemical formation of the elusive zwitterion of the GFP chromophore is observed by means of an equally fast excited state proton transfer from the cation. The significance of these results for understanding and modifying the properties of fluorescent proteins are discusse

    Complete Proton Transfer Cycle in GFP and Its T203V and S205V Mutants

    Get PDF
    Proton transfer is critical in many important biochemical reactions. The unique three‐step excited‐state proton transfer in avGFP allows observations of protein proton transport in real‐time. In this work we exploit femtosecond to microsecond transient IR spectroscopy to record, in D2O, the complete proton transfer photocycle of avGFP, and two mutants (T203V and S205V) which modify the structure of the proton wire. Striking differences and similarities are observed among the three mutants yielding novel information on proton transfer mechanism, rates, isotope effects, H‐bond strength and proton wire stability. These data provide a detailed picture of the dynamics of long‐range proton transfer in a protein against which calculations may be compared

    Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems

    Get PDF
    The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment–protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy

    Ageing, Muscle Power and Physical Function: A Systematic Review and Implications for Pragmatic Training Interventions.

    Get PDF
    BACKGROUND: The physiological impairments most strongly associated with functional performance in older people are logically the most efficient therapeutic targets for exercise training interventions aimed at improving function and maintaining independence in later life. OBJECTIVES: The objectives of this review were to (1) systematically review the relationship between muscle power and functional performance in older people; (2) systematically review the effect of power training (PT) interventions on functional performance in older people; and (3) identify components of successful PT interventions relevant to pragmatic trials by scoping the literature. METHODS: Our approach involved three stages. First, we systematically reviewed evidence on the relationship between muscle power, muscle strength and functional performance and, second, we systematically reviewed PT intervention studies that included both muscle power and at least one index of functional performance as outcome measures. Finally, taking a strong pragmatic perspective, we conducted a scoping review of the PT evidence to identify the successful components of training interventions needed to provide a minimally effective training dose to improve physical function. RESULTS: Evidence from 44 studies revealed a positive association between muscle power and indices of physical function, and that muscle power is a marginally superior predictor of functional performance than muscle strength. Nine studies revealed maximal angular velocity of movement, an important component of muscle power, to be positively associated with functional performance and a better predictor of functional performance than muscle strength. We identified 31 PT studies, characterised by small sample sizes and incomplete reporting of interventions, resulting in less than one-in-five studies judged as having a low risk of bias. Thirteen studies compared traditional resistance training with PT, with ten studies reporting the superiority of PT for either muscle power or functional performance. Further studies demonstrated the efficacy of various methods of resistance and functional task PT on muscle power and functional performance, including low-load PT and low-volume interventions. CONCLUSIONS: Maximal intended movement velocity, low training load, simple training methods, low-volume training and low-frequency training were revealed as components offering potential for the development of a pragmatic intervention. Additionally, the research area is dominated by short-term interventions producing short-term gains with little consideration of the long-term maintenance of functional performance. We believe the area would benefit from larger and higher-quality studies and consideration of optimal long-term strategies to develop and maintain muscle power and physical function over years rather than weeks

    The unity hypothesis revisited: can the gender incongruent McGurk effect be disrupted by priming?

    No full text
    The “unity assumption hypothesis” contends that higher-level factors, such as a perceiver’s belief and prior experience, modulate multisensory integration. The McGurk illusion exemplifies such integration. When a visual velar /ga/ is dubbed with an auditory bilabial /ba/, listeners unify the discrepant signals with knowledge that open lips cannot produce /ba/ and a fusion percept /da/ is perceived. Previous research claimed to have falsified this theory by demonstrating the McGurk effect occurs even when a face is dubbed with a gender incongruent voice. But perhaps stronger evidence than just an apparent incongruence between unfamiliar faces and voices is needed to prevent perceptual unity. Here we investigated whether the McGurk illusion with gender incongruent stimuli can be disrupted by priming with appropriate pairing of face and voice. In an online experiment, 89 participants aged 18-62, were randomly allocated to experience experimental trials containing either a male or female face with incongruent gender voice. The number of times participants experienced a McGurk illusion was measured before and after a training block which familiarized them with the true pairings of face and voice. After training and priming, the susceptibility to the McGurk effects decreased significantly on average. The findings support the notion that unity assumptions modulate intersensory bias, and confirm and extend previous studies using gender incongruous McGurk stimuli

    Hydrogen Bond Switching among Flavin and Amino Acid Side Chains in the BLUF Photoreceptor Observed by Ultrafast Infrared Spectroscopy

    Get PDF
    BLUF domains constitute a recently discovered class of photoreceptor proteins found in bacteria and eukaryotic algae. BLUF domains are blue-light sensitive through a FAD cofactor that is involved in an extensive hydrogen-bond network with nearby amino acid side chains, including a highly conserved tyrosine and glutamine. The participation of particular amino acid side chains in the ultrafast hydrogen-bond switching reaction with FAD that underlies photoactivation of BLUF domains is assessed by means of ultrafast infrared spectroscopy. Blue-light absorption by FAD results in formation of FAD•− and a bleach of the tyrosine ring vibrational mode on a picosecond timescale, showing that electron transfer from tyrosine to FAD constitutes the primary photochemistry. This interpretation is supported by the absence of a kinetic isotope effect on the fluorescence decay on H/D exchange. Subsequent protonation of FAD•− to result in FADH• on a picosecond timescale is evidenced by the appearance of a N-H bending mode at the FAD N5 protonation site and of a FADH• C=N stretch marker mode, with tyrosine as the likely proton donor. FADH• is reoxidized in 67 ps (180 ps in D2O) to result in a long-lived hydrogen-bond switched network around FAD. This hydrogen-bond switch shows infrared signatures from the C-OH stretch of tyrosine and the FAD C4=O and C=N stretches, which indicate increased hydrogen-bond strength at all these sites. The results support a previously hypothesized rotation of glutamine by ∼180° through a light-driven radical-pair mechanism as the determinant of the hydrogen-bond switch

    Ultrafast Photoconversion of the Green Fluorescent Protein Studied by Accumulative Femtosecond Spectroscopy

    Get PDF
    The irreversible photoconversion of T203V green fluorescent protein (GFP) via decarboxylation is studied under femtosecond excitation using an accumulative product detection method that allows us to measure small conversion efficiencies of down to ΔOD = 10−7 absorbance change per pulse. Power studies with 800- and 400-nm pulse excitation reveal that excitation to higher states of the neutral form of the GFP chromophore induces photoconversion very efficiently. The singly excited neutral chromophore is a resonant intermediate of the two-step excitation process that leads to efficient photoconversion. We determine the dynamics of this two-step process by separating the excitation step of the neutral chromophore from the further excitation step to the reactive state in a time-resolved two-color experiment. The dynamics show that a further excitation to the very reactive higher excited state is only possible from the initially excited neutral chromophore and not from the fluorescent intermediate state. For applications of GFP in two-photon fluorescence microscopy, the found photochemical behavior implies that the high intensity conditions used in microscopy can lead to photoconversion easily and care has to be taken to avoid unwanted photoconversion
    corecore