17 research outputs found

    U.S. Geological Survey Water Information on the Internet

    Get PDF

    The genomics of heart failure: design and rationale of the HERMES consortium

    Get PDF
    Aims The HERMES (HEart failure Molecular Epidemiology for Therapeutic targets) consortium aims to identify the genomic and molecular basis of heart failure.Methods and results The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of >1.10 for common variants (allele frequency > 0.05) and >1.20 for low-frequency variants (allele frequency 0.01-0.05) at P Conclusions HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.</p

    The genomics of heart failure: design and rationale of the HERMES consortium

    Get PDF
    Aims: The HERMES (HEart failure Molecular Epidemiology for Therapeutic targetS) consortium aims to identify the genomic and molecular basis of heart failure. Methods and results: The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome‐wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow‐up following heart failure diagnosis ranged from 2 to 116 months. Forty‐nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34–90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of ≄1.10 for common variants (allele frequency ≄ 0.05) and ≄1.20 for low‐frequency variants (allele frequency 0.01–0.05) at P &lt; 5 × 10−8 under an additive genetic model. Conclusions: HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Metabolomic Profiling of the Effects of Dapagliflozin in Heart Failure with Reduced Ejection Fraction: DEFINE-HF

    No full text
    Background: Sodium-glucose co-transporter-2 inhibitors (SGLT2i) are foundational therapy in patients with heart failure with reduced ejection fraction (HFrEF), yet underlying mechanisms of benefit are not well defined. We sought to investigate the relationships between SGLT2i treatment, changes in metabolic pathways, and outcomes using targeted metabolomics. Methods: Dapagliflozin Effects on Biomarkers, Symptoms and Functional Status in Patients with HF with Reduced Ejection Fraction (DEFINE-HF) was a placebo-controlled trial of dapagliflozin in HFrEF. We performed targeted mass spectrometry-based profiling of 63 metabolites (45 acylcarnitines [markers of fatty acid oxidation], 15 amino acids, and 3 conventional metabolites) in plasma samples at randomization and 12 weeks. Using mixed models, we identified principal components analysis (PCA)-defined metabolite clusters that changed differentially with treatment, and also examined the relationship between change in metabolite clusters with change in Kansas City Cardiomyopathy Questionnaire (KCCQ) Scores and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Models were adjusted for relevant clinical covariates, and nominal p\u3c0.05 with FDR-adjusted p-value\u3c0.10 were used to determine statistical significance. Results: Among the 234 DEFINE-HF participants with targeted metabolomic data, the mean age was 62.0±11.1 years, 25% were women, 38% were Black, and mean ejection fraction was 27±8%. Dapagliflozin increased ketone-related and short/medium-chain acylcarnitine PCA metabolite clusters compared with placebo (nominal p=0.01, FDR-adjusted p-value=0.08 for both clusters). However, ketosis (Β-hydroxybutyrate levels \u3e 500 ÎŒM), was infrequently achieved (3 [2.5%] in dapagliflozin arm vs. 1 [0.9%] in placebo arm), and supraphysiologic levels were not observed. Conversely, increases in long-chain acylcarnitine, long-chain dicarboxylacylcarnitine, and aromatic amino acid metabolite clusters were associated with decreases in KCCQ scores (i.e. worse quality of life) and increases in NT-proBNP levels, without interaction by treatment group. Conclusions: In this study of targeted metabolomics in a placebo-controlled trial of SGLT2i in HFrEF, we observed effects of dapagliflozin on key metabolic pathways, supporting a role for altered ketone and fatty acid biology with SGLT2i in patients with HFrEF. Reassuringly, only physiologic levels of ketosis were observed. Additionally, we identified several metabolic biomarkers associated with adverse HFrEF outcomes
    corecore