1,273 research outputs found
3,4-dimethylphenyl benzoate
In the title compound, C15H14O2, the terminal rings form a dihedral angle of 52.39(4)°. The mean plane of the central ester group [r.m.s. deviation = 0.0488Å] is twisted away from the benzene and phenyl rings by 60.10(4) and 8.67(9)°, respectively. In the crystal, molecules are linked by weak C - HO hydrogen bonds, forming C(6) chains which run along [100]
Sodium-mediated magnesiation of thiophene and tetrahydrothiophene : structural contrasts with furan and tetrahydrofuran
Sulfur-containing heterocycles are currently attracting agreat deal of interest in several diverse fields. For instance, substituted tetrahydrothiophenes have received considerable attention due to their extremely wide-ranging chemical and biological applications.These include their use as potent a-glucosidase inhibitors, as an inhibitor of copper amine oxidases and as selective A3 agonists and antagonists. In addition, they have been utilised in chemical transformations, such as catalytic asymmetric epoxidation, catalytic intramolecular cyclopropanation, and asymmetric metal catalysis hydrogenation. From a nanochemical perspective,the adsorption chemistries and physical propertiesof various thiophenes and tetrahydrothiophenes on gold surfaces have recently come to the fore.[7] Polythiophenes are also key compounds in modern materials research, currently utilised in, for example, the fabrication of semi-conducting, fluorescent, and electronic and optoelectronic materials.[8]In this work, metallation (exchange of a hydrogen atom with a metal atom) of the parent heterocycles, tetrahydrothiophene (THT) and thiophene is considered. Metallation is one of the most fundamental reactions in modern day synthesis and is a key tool in the preparation of functionalised aromaticand heterocyclic compounds. It is usually achieved bythe utilisation of commercially accessible organolithiums (or lithium amides); however, these reactions do have theirdrawbacks, including the intolerance of certain functionalgroups, the need for cryoscopic temperatures and the inadvertent reactivity with polar reaction solvents
Investigation of macrocyclisation routes to 1,4,7-triazacyclononanes : efficient syntheses from 1,2-ditosylamides
Two routes to the synthesis of a cyclohexyl-fused 1,4,7-triazacyclononane involving macrocyclisations of tosamides have been investigated. In the first approach, using a classic Richman-Atkins-type cyclisation of a cyclohexyl-substituted 1,4,7-tritosamide with ethylene glycol ditosylate, afforded the cyclohexyl-fused 1,4,7-triazacyclononane in 5.86% overall yield in four steps. The second, more concise, approach involving the macrocyclisation of trans-cyclohexane-1,2-ditosamide with the tritosyl derivative of diethanolamine initially gave poor yields (< 25%). The well-documented problems with efficiencies in macrocyclisations using 1,2-ditosamides led to the use of a wider range of 1,2-ditosamides including ethane-1,2-ditosamide and propane-1,2-ditosamide. These extended studies led to the development of an efficient macrocyclisation protocol using lithium hydride. This new method afforded 1,4,7-tritosyl-1,4,7-triazacyclononanes in good yield (57-90%) from 1,2-ditosamides in a single step. These efficient methods were then applied to the preparation of a chiral cyclohexyl-fused 1,4,7-tritosyl-1,4,7-triazacyclononane (65-70%). This key chiral intermediate was then converted into a copper(II) complex following detosylation and N-methylation. The resulting chiral copper(II) complex catalysed the aziridination of styrene but it did so in a racemic fashion
Modelling eggshell maculation
The eggshells of many avian species are characterised by distinctive patterns of maculation, consisting of speckles, spots, blotches or streaks, the spatial-statistical properties of which vary considerably between (and often within) species. Understanding the mechanisms underlying the production of eggshell maculation would enable us to explore the costs and constraints on the evolution of maculation patterns, but as yet this area is surprisingly understudied. Here I present a simple model of eggshell maculation, which is based on the known biology of pigment deposition, and which can produce a range of realistic maculation patterns. In particular, it provides an explanation for previous observations of maculation heterogeneity and diversity, and allows testable predictions to be made regarding maculation patterns, including a possible signalling role
Pregnancy and childbirth in English prisons : institutional ignominy and the pains of imprisonment
© 2020 The Authors. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL.With a prison population of approximately 9000 women in England, it is estimated that approximately 600 pregnancies and 100 births occur annually. Despite an extensive literature on the sociology of reproduction, pregnancy and childbirth among women prisoners is under‐researched. This article reports an ethnographic study in three English prisons undertaken in 2015‐2016, including interviews with 22 prisoners, six women released from prison and 10 staff members. Pregnant prisoners experience numerous additional difficulties in prison including the ambiguous status of a pregnant prisoner, physical aspects of pregnancy and the degradation of the handcuffed or chained prisoner during visits to the more public setting of hospital. This article draws on Erving Goffman's concepts of closed institutions, dramaturgy and mortification of self, Crewe et al.'s work on the gendered pains of imprisonment and Crawley's notion of ‘institutional thoughtlessness’, and proposes a new concept of institutional ignominy to understand the embodied situation of the pregnant prisoner.Peer reviewe
A water-soluble core material for manufacturing hollow composite sections
This paper presents the development of a low-cost water-soluble core material, which is suitable for producing hollow composite structures via high pressure moulding processes, such as compression moulding and resin transfer moulding. The bulk material of the core is sodium chloride (NaCl), which is held together by a watersoluble trehalose binder. The composition of the core has been optimised to provide acceptable dissolution rates and mechanical properties for high volume structural composite applications.
The compressive strength of the NaCl core was 57 MPa at ambient temperature, which reduced to 20 MPa when tested at 120 °C. The compressive strength at elevated temperature was approximately 4 times higher than for a water-soluble commercial benchmark and 33 times higher than a conventional structural closed-cell foam. The specific dissolution rate of the NaCl core was between 0.14 and 1.23 kg/(min·m2), depending on processing parameters and the coefficient of thermal expansion was approximately 43 × 10−6/K. A practical example has been presented to demonstrate how the removable core can be used to produce a representative hollow section of an integrally stiffened panel
Numerical modelling of the sound absorption spectra for bottleneck dominated porous metallic structures
Numerical simulations are used to test the ability of several common equivalent fluid models to predict the sound absorption behaviour in porous metals with “bottleneck” type structures. Of these models, Wilson's relaxation model was found to be an excellent and overall best fit for multiple sources of experimental acoustic absorption data. Simulations, incorporating Wilson's model, were used to highlight the relative importance of key geometrical features of bottleneck structures on the normal incidence sound absorption spectrum. Simulations revealed significant improvements in absorption behaviour would be achieved, over a “benchmark” structure from the literature, by maximising the porosity (0.8) and targeting a permeability in the range of 4.0 × 10 −10 m 2 . Such a modelling approach should provide a valuable tool in the optimisation of sound absorption performance and structural integrity, to meet application-specific requirements, for a genre of porous materials that offer a unique combination of acoustic absorption and load bearing capability
Regulatory Model for AAL
Proceedings of: 6th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2011). Salamanca, April 6-8, 2011Abstract: In this work, authors define a set of principles that should be contained in context-aware applications (including biometric sensors) to accomplish the legal aspect in Europe and USA. Paper presents the necessity to consider legal aspect, related with pri-vacy or human rights, into the development of the incipient context based services. Clearly, context based services and Ambient Intelligence (and the most promising work area in Europe that is Ambient Assisted Living, ALL) needs a great effort in research new identification procedures.Publicad
Entanglement and Density Matrix of a Block of Spins in AKLT Model
We study a 1-dimensional AKLT spin chain, consisting of spins in the bulk
and at both ends. The unique ground state of this AKLT model is described
by the Valence-Bond-Solid (VBS) state. We investigate the density matrix of a
contiguous block of bulk spins in this ground state. It is shown that the
density matrix is a projector onto a subspace of dimension . This
subspace is described by non-zero eigenvalues and corresponding eigenvectors of
the density matrix. We prove that for large block the von Neumann entropy
coincides with Renyi entropy and is equal to .Comment: Revised version, typos corrected, references added, 31 page
Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity
From the beginning of the subject, calculations of quantum vacuum energies or
Casimir energies have been plagued with two types of divergences: The total
energy, which may be thought of as some sort of regularization of the
zero-point energy, , seems manifestly divergent. And
local energy densities, obtained from the vacuum expectation value of the
energy-momentum tensor, , typically diverge near
boundaries. The energy of interaction between distinct rigid bodies of whatever
type is finite, corresponding to observable forces and torques between the
bodies, which can be unambiguously calculated. The self-energy of a body is
less well-defined, and suffers divergences which may or may not be removable.
Some examples where a unique total self-stress may be evaluated include the
perfectly conducting spherical shell first considered by Boyer, a perfectly
conducting cylindrical shell, and dilute dielectric balls and cylinders. In
these cases the finite part is unique, yet there are divergent contributions
which may be subsumed in some sort of renormalization of physical parameters.
The divergences that occur in the local energy-momentum tensor near surfaces
are distinct from the divergences in the total energy, which are often
associated with energy located exactly on the surfaces. However, the local
energy-momentum tensor couples to gravity, so what is the significance of
infinite quantities here? For the classic situation of parallel plates there
are indications that the divergences in the local energy density are consistent
with divergences in Einstein's equations; correspondingly, it has been shown
that divergences in the total Casimir energy serve to precisely renormalize the
masses of the plates, in accordance with the equivalence principle.Comment: 53 pages, 1 figure, invited review paper to Lecture Notes in Physics
volume in Casimir physics edited by Diego Dalvit, Peter Milonni, David
Roberts, and Felipe da Ros
- …
