24 research outputs found

    Probing Cellular Dynamics with a Chemical Signal Generator

    Get PDF
    Observations of material and cellular systems in response to time-varying chemical stimuli can aid the analysis of dynamic processes. We describe a microfluidic “chemical signal generator,” a technique to apply continuously varying chemical concentration waveforms to arbitrary locations in a microfluidic channel through feedback control of the interface between parallel laminar (co-flowing) streams. As the flow rates of the streams are adjusted, the channel walls are exposed to a chemical environment that shifts between the individual streams. This approach can be used to probe the dynamic behavior of objects or substances adherent to the interior of the channel. To demonstrate the technique, we exposed live fibroblast cells to ionomycin, a membrane-permeable calcium ionophore, while assaying cytosolic calcium concentration. Through the manipulation of the laminar flow interface, we exposed the cells' endogenous calcium handling machinery to spatially-contained discrete and oscillatory intracellular disturbances, which were observed to elicit a regulatory response. The spatiotemporal precision of the generated signals opens avenues to previously unapproachable areas for potential investigation of cell signaling and material behavior

    The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology

    Get PDF
    The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people

    Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection

    Get PDF
    Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact

    Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection

    Get PDF
    Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact

    Analysis of Pavement Structural Variability

    No full text
    It is well known that during construction of any highway pavement, variations in layer material quality, environmental influences, homogeneity, and variations in construction technique all lead to nonuniform spatial variations in the layer material properties/layer thicknesses comprising the pavement structure. As vehicle loads are applied to the pavement, the spatial variations result in the development of nonuniform spatial distributions of stress, strain, and deformation within the pavement, in turn causing nonuniform distributions of defects in the pavement. (External influences arising after construction such as the infiltration of water, drying out and freeze thaw cycles will also contribute to such nonuniform spatial distribution of defects.) The nonuniform distribution of defects eventually manifest into visible differences in pavement distress, e.g., variations in area cracked, and variations in permanent deformation along the wheel track called rutting. It is an important aspect of the Dynamic Interaction Vehicle - INfrastructure Experiment (DIVINE) program to attempt to distinguish between the development of pavement distress resulting from initial variations in material properties/layer thicknesses and from variations in the dynamic wheel forces imposed to the pavement due to tire-suspension dynamics. The analyses presented in this report were conducted to determine if such differences in the level of these two phenomena are detectable. In the analyses initial structural variability of the Canterbury Accelerated Pavement Testing Indoor Facility at University of Canterbury, New Zealand (CAPTIF) pavement is investigated in terms of two known measured variables, thickness and falling weight deflectometer (FWD) center deflection. The study revealed that pavement structural variability indeed influences pavement performance, such as pavement rutting and cracking; the pavement structural variability must be taken into consideration when investigating the effect of heavy vehicle induced dynamic load on pavement performance. The study also showed that steel suspension usually generates higher dynamic wheel force and causes more pavement damage than air suspension; and exponential relationships exist between pavement performance, wheel force and pavement initial condition

    Treatment of thoracolumbar kyphosis in patients with mucopolysaccharidosis type I: results of an international consensus procedure

    No full text
    BACKGROUND: In all patients with mucopolysaccharidosis type I (MPS I), skeletal disease (dysostosis multiplex) is a prominent, debilitating, condition related complication that may impact strongly on activities of daily living. Unfortunately, it is not alleviated by treatment with hematopoietic cell transplantation (HCT) or enzyme replacement therapy (ERT). Although early kyphosis is one of the key features of dysostosis multiplex, there is no international consensus on the optimal management. Therefore, an international consensus procedure was organized with the aim to develop the first clinical practice guideline for the management of thoracolumbar kyphosis in MPS I patients. METHODS: A literature review was conducted to identify all available information about kyphosis and related surgery in MPS I patients. Subsequently, a modified Delphi procedure was used to develop consensus statements. The expert panel included 10 spinal orthopedic surgeons, 6 pediatricians and 3 physiotherapists, all experienced in MPS I. The procedure consisted of 2 written rounds, a face-to-face meeting and a final written round. The first 2 rounds contained case histories, general questions and draft statements. During the face-to-face meeting consensus statements were developed. In the final round, the panel had the opportunity to anonymously express their opinion about the proposed statements. RESULTS: Eighteen case series and case reports were retrieved from literature reporting on different surgical approaches and timing of thoracolumbar kyphosis surgery in MPS I. During the face-to-face meeting 16 statements were discussed and revised. Consensus was reached on all statements. CONCLUSION: This international consensus procedure resulted in the first clinical practice guideline for the management of thoracolumbar kyphosis in MPS I patients, focusing on the goals and timing of surgery, as well as the optimal surgical approach, the utility of bracing and required additional assessments (e.g. radiographs). Most importantly, it was concluded that the decision for surgery depends not only on the kyphotic angle, but also on additional factors such as the progression of the deformity and its flexibility, the presence of symptoms, growth potential and comorbidities. The eventual goal of treatment is the maintenance or improvement of quality of life. Further international collaborative research related to long-term outcome of kyphosis surgery in MPS I is essential as prognostic information is lacking
    corecore