8 research outputs found

    Effects of whole life exposure to Bisphenol A or 17Ξ±-ethinyl estradiol in uterus of nulligravida CD1 mice

    Get PDF
    AbstractBisphenol A (BPA) is an endocrine disrupting chemical (EDC) with known estrogenic activity. Exposure to BPA in adult mice was shown previously to increase uterine pathology with associated alterations in the immune response and fibrosis. Reported here are uterine histopathology findings from CD1 mice exposed to BPA or 17Ξ±-ethinyl estradiol at multiple doses from conception through postnatal day 90. Along with uterine pathology, impacts of exposure on collagen accumulation and F4/80 positive macrophage numbers, as an indicator of immune response in the endometrium and myometrium, are presented. These companion data are from offspring (F1) of the dams analyzed for effects of adult exposures published in the Reproductive Toxicology manuscript titled β€œStrain-Specific Induction of Endometrial Periglandular Fibrosis in Mice Exposed during Adulthood to the Endocrine Disrupting Chemical Bisphenol A” (doi: 10.1016/j.reprotox.2015.08.001)

    RNA-seq Analysis Reveals That an ECF Οƒ Factor, AcsS, Regulates Achromobactin Biosynthesis in Pseudomonas syringae pv. syringae B728a

    Get PDF
    Iron is an essential micronutrient for Pseudomonas syringae pv. syringae strain B728a and many other microorganisms; therefore, B728a has evolved methods of iron acquirement including the use of iron-chelating siderophores. In this study an extracytoplasmic function (ECF) sigma factor, AcsS, encoded within the achromobactin gene cluster is shown to be a major regulator of genes involved in the biosynthesis and secretion of this siderophore. However, production of achromobactin was not completely abrogated in the deletion mutant, implying that other regulators may be involved such as PvdS, the sigma factor that regulates pyoverdine biosynthesis. RNA-seq analysis identified 287 genes that are differentially expressed between the AcsS deletion mutant and the wild type strain. These genes are involved in iron response, secretion, extracellular polysaccharide production, and cell motility. Thus, the transcriptome analysis supports a role for AcsS in the regulation of achromobactin production and the potential activity of both AcsS and achromobactin in the plant-associated lifestyle of strain B728a
    corecore