214 research outputs found

    Depletion of atmospheric nitrate and chloride as a consequence of the Toba Volcanic Eruption

    Get PDF
    Continuous measurements of SO42− and electrical conductivity (ECM) along the GISP2 ice core record the Toba mega‐eruption at a depth 2590.95 to 2091.25 m (71,000±5000 years ago). Major chemical species were analyzed at a resolution of 1 cm per sample for this section. An ∼6‐year long period with extremely high volcanic SO42− coincident with a 94% depletion of nitrate and 63% depletion of chloride is observed at the depth of the Toba horizon. Such a reduction of chloride in a volcanic layer preserved in an ice core has not been observed in any previous studies. The nearly complete depletion of nitrate (to 5 ppb) encountered at the Toba level is the lowest value in the entire ∼250,000 years of the GISP2 ice core record. We propose possible mechanisms to explain the depletion of nitrate and chloride resulting from this mega‐eruption

    Volcanic aerosol records and tephrochronology of the Summit, Greenland, ice cores

    Get PDF
    The recently collected Greenland Ice Sheet Project 2 (GISP2) and Greenland Ice Core Project ice cores from Summit, Greenland, provide lengthy and highly resolved records of the deposition of both the aerosol (H2SO4) and silicate (tephra) components of past volcanism. Both types of data are very beneficial in developing the hemispheric to global chronology of explosive volcanism and evaluating the entire volcanism‐climate system. The continuous time series of volcanic SO42− for the last 110,000 years show a strong relationship between periods of increased volcanism and periods of climatic change. The greatest number of volcanic SO42− signals, many of very high magnitude, occur during and after the final stages of deglaciation (6000–17,000 years ago), possibly reflecting the increased crustal stresses that occur with changing volumes of continental ice sheets and with the subsequent changes in the volume of water in ocean basins (sea level change). The increase in the number of volcanic SO42− signals at 27,000–36,000 and 79,000–85,000 years ago may be related to initial ice sheet growth prior to the glacial maximum and prior to the beginning of the last period of glaciation, respectively. A comparison of the electrical conductivity of the GISP2 core with that of the volcanic SO42− record for the Holocene indicates that only about half of the larger volcanic signals are coincident in the two records. Other volcanic acids besides H2SO4 and other SO42− sources can complicate the comparisons, although the threshold level picked to make such comparisons is especially critical. Tephra has been found in both cores with a composition similar to that originating from the Vatnaöldur eruption that produced the Settlement Layer in Iceland (mid‐A.D. 870s), from the Icelandic eruption that produced the Saksunarvatn ash (∼10,300 years ago), and from the Icelandic eruption(s) that produced the Z2 ash zone in North Atlantic marine cores (∼52,700 years ago). The presence of these layers provides absolute time lines for correlation between the two cores and for correlation with proxy records from marine sediment cores and terrestrial deposits containing these same tephras. The presence of both rhyolitic and basaltic shards in the Z2 ash in theGISP2 core and the composition of the basaltic grains lend support to multiple Icelandic sources (Torfajökull area and Katla) for the Z2 layer. Deposition of the Z2 layer occurs at the beginning of a stadial event, further reflecting the possibility of a volcanic triggering by the effects of changing climatic conditions

    Potential atmospheric impact of the Toba Mega‐Eruption ∼71,000 years ago

    Get PDF
    An ∼6‐year long period of volcanic sulfate recorded in the GISP2 ice core about 71,100 ± 5000 years ago may provide detailed information on the atmospheric and climatic impact of the Toba mega‐eruption. Deposition of these aerosols occur at the beginning of an ∼1000‐year long stadial event, but not immediately before the longer glacial period beginning ∼67,500 years ago. Total stratospheric loading estimates over this ∼6‐year period range from 2200 to 4400 Mt of H2SO4 aerosols. The range in values is given to compensate for uncertainties in aerosol transport. Magnitude and longevity of the atmospheric loading may have led directly to enhanced cooling during the initial two centuries of this ∼1000‐year cooling event

    The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy.

    Get PDF
    Autophagy plays a key role during Salmonella infection, by eliminating these pathogens following escape into the cytosol. In this process, selective autophagy receptors, including the myosin VI adaptor proteins optineurin and NDP52, have been shown to recognize cytosolic pathogens. Here, we demonstrate that myosin VI and TAX1BP1 are recruited to ubiquitylated Salmonella and play a key role in xenophagy. The absence of TAX1BP1 causes an accumulation of ubiquitin-positive Salmonella, whereas loss of myosin VI leads to an increase in ubiquitylated and LC3-positive bacteria. Our structural studies demonstrate that the ubiquitin-binding site of TAX1BP1 overlaps with the myosin VI binding site and point mutations in the TAX1BP1 zinc finger domains that affect ubiquitin binding also ablate binding to myosin VI. This mutually exclusive binding and the association of TAX1BP1 with LC3 on the outer limiting membrane of autophagosomes may suggest a molecular mechanism for recruitment of this motor to autophagosomes. The predominant role of TAX1BP1, a paralogue of NDP52, in xenophagy is supported by our evolutionary analysis, which demonstrates that functionally intact NDP52 is missing in Xenopus and mice, whereas TAX1BP1 is expressed in all vertebrates analysed. In summary, this work highlights the importance of TAX1BP1 as a novel autophagy receptor in myosin VI-mediated xenophagy. Our study identifies essential new machinery for the autophagy-dependent clearance of Salmonella typhimurium and suggests modulation of myosin VI motor activity as a potential therapeutic target in cellular immunity.FB and DAT thank the Wellcome Trust (www.wellcome.ac.uk) for funding of a University Award to FB (086743), the CIMR Strategic Award (100140) and an equipment grant [093026]. FB also thanks the Medical Research Council UK (www.mrc.ac.uk) for funding of a project grant (MR/K000888/1). JKJ, MA and MB were supported by the Medical Research Council UK (www.mrc.ac.uk) (U105184325).This is the final published version. It first appeared at http://dx.doi.org/10.1371/journal.ppat.100517

    The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of Salmonella typhimurium by autophagy

    No full text
    Autophagy plays a key role during Salmonella infection, by eliminating these pathogens following escape into the cytosol. In this process, selective autophagy receptors, including the myosin VI adaptor proteins optineurin and NDP52, have been shown to recognize cytosolic pathogens. Here, we demonstrate that myosin VI and TAX1BP1 are recruited to ubiquitylated Salmonella and play a key role in xenophagy. The absence of TAX1BP1 causes an accumulation of ubiquitin-positive Salmonella, whereas loss of myosin VI leads to an increase in ubiquitylated and LC3-positive bacteria. Our structural studies demonstrate that the ubiquitin-binding site of TAX1BP1 overlaps with the myosin VI binding site and point mutations in the TAX1BP1 zinc finger domains that affect ubiquitin binding also ablate binding to myosin VI. This mutually exclusive binding and the association of TAX1BP1 with LC3 on the outer limiting membrane of autophagosomes may suggest a molecular mechanism for recruitment of this motor to autophagosomes. The predominant role of TAX1BP1, a paralogue of NDP52, in xenophagy is supported by our evolutionary analysis, which demonstrates that functionally intact NDP52 is missing in Xenopus and mice, whereas TAX1BP1 is expressed in all vertebrates analysed. In summary, this work highlights the importance of TAX1BP1 as a novel autophagy receptor in myosin VI-mediated xenophagy. Our study identifies essential new machinery for the autophagy-dependent clearance of Salmonella typhimurium and suggests modulation of myosin VI motor activity as a potential therapeutic target in cellular immunity

    Volcanic Aerosol Records and Tephrochronology of the Summit, Greenland, Ice Cores

    Get PDF
    The recently collected Greenland Ice Sheet Project 2 (GISP2) and Greenland Ice Core Project ice cores from Summit, Greenland, provide lengthy and highly resolved records of the deposition of both the aerosol (H2SO4) and silicate (tephra) components of past volcanism. Both types of data are very beneficial in developing the hemispheric to global chronology of explosive volcanism and evaluating the entire volcanism-climate system. The continuous time series of volcanic SO42− for the last 110,000 years show a strong relationship between periods of increased volcanism and periods of climatic change. The greatest number of volcanic SO42− signals, many of very high magnitude, occur during and after the final stages of deglaciation (6000–17,000 years ago), possibly reflecting the increased crustal stresses that occur with changing volumes of continental ice sheets and with the subsequent changes in the volume of water in ocean basins (sea level change). The increase in the number of volcanic SO4 2− signals at 27,000–36,000 and 79,000–85,000 years ago may be related to initial ice sheet growth prior to the glacial maximum and prior to the beginning of the last period of glaciation, respectively. A comparison of the electrical conductivity of the GISP2 core with that of the volcanic SO42− record for the Holocene indicates that only about half of the larger volcanic signals are coincident in the two records. Other volcanic acids besides H2SO4 and other SO42− sources can complicate the comparisons, although the threshold level picked to make such comparisons is especially critical. Tephra has been found in both cores with a composition similar to that originating from the Vatnaöldur eruption that produced the Settlement Layer in Iceland (mid-A.D. 870s), from the Icelandic eruption that produced the Saksunarvatn ash (∼10,300 years ago), and from the Icelandic eruption(s) that produced the Z2 ash zone in North Atlantic marine cores (∼52,700 years ago). The presence of these layers provides absolute time lines for correlation between the two cores and for correlation with proxy records from marine sediment cores and terrestrial deposits containing these same tephras. The presence of both rhyolitic and basaltic shards in the Z2 ash in theGISP2 core and the composition of the basaltic grains lend support to multiple Icelandic sources (Torfajökull area and Katla) for the Z2 layer. Deposition of the Z2 layer occurs at the beginning of a stadial event, further reflecting the possibility of a volcanic triggering by the effects of changing climatic conditions

    Deeply dredged submarine HIMU glasses from the Tuvalu Islands, Polynesia: Implications for volatile budgets of recycled oceanic crust

    Get PDF
    Ocean island basalts (OIB) with extremely radiogenic Pb-isotopic signatures are melts of a mantle component called HIMU (high µ, high 238U/204Pb). Until now, deeply dredged submarine HIMU glasses have not been available, which has inhibited complete geochemical (in particular, volatile element) characterization of the HIMU mantle. We report major, trace and volatile element abundances in a suite of deeply dredged glasses from the Tuvalu Islands. Three Tuvalu glasses with the most extreme HIMU signatures have F/Nd ratios (35.6 ± 3.6) that are higher than the ratio (∼21) for global OIB and MORB, consistent with elevated F/Nd ratios in end-member HIMU Mangaia melt inclusions. The Tuvalu glasses with the most extreme HIMU composition have Cl/K (0.11–0.12), Br/Cl (0.0024), and I/Cl (5–6 × 10−5) ratios that preclude significant assimilation of seawater-derived Cl. The new HIMU glasses that are least degassed for H2O have low H2O/Ce ratios (75–84), similar to ratios identified in end-member OIB glasses with EM1 and EM2 signatures, but significantly lower than H2O/Ce ratios (119–245) previously measured in melt inclusions from Mangaia. CO2-H2O equilibrium solubility models suggest that these HIMU glasses (recovered in two different dredges at 2500–3600 m water depth) have eruption pressures of 295–400 bars. We argue that degassing is unlikely to significantly reduce the primary melt H2O. Thus, the lower H2O/Ce in the HIMU Tuvalu glasses is a mantle signature. We explore oceanic crust recycling as the origin of the low H2O/Ce (∼50–80) in the EM1, EM2, and HIMU mantle domains

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed
    corecore