182 research outputs found

    Seasonal and Taxonomic Differences in the Size and Activity of the Thyroid Glands in Birds

    Get PDF
    Author Institution: University of Illinois, Champaign, and Metropolitan Park District, Cleveland, OhioThe thyroid glands of the house sparrow and other small birds in the Cleveland region have greater secretory activity during late autumn and winter than during late spring and summer. Evidence for this is the presence, during the winter, of high epithelial cells surrounding the follicles, of smaller follicles, and of lesser volumes and weights of the whole thyroid. Large-sized species have larger thyroids, both absolute and relative to body weight, than do small species. With certain precautions, changes in the size of the thyroids serve as a useful index of inverse variations in secretory activity intra-specifically, but not inter-specifically

    Energy relations of winter roost-site utilization by American goldfinches ( Carduelis tristis )

    Full text link
    American goldfinches ( Carduelis tristis ) were observed roosting in Colorado blue spruce ( Picea pungens ), which comprised part of a mixed stand of conifers. Their winter roost-sites were distally situated among the most densely-needled branches on the leeward sides of these trees. Heated and unheated taxidermic goldfinch mounts were placed within these sites and at the same height in an adjacent clearing. The radiative and convective characteristics of these locations were monitored simultaneously and compared to predicted power requirements of live goldfinches (based on laboratory calibration of heated mounts) and operative temperatures ( T e ; based on body temperatures of unheated mounts). The winter roost-sites significantly reduced radiative and convective heat exchanges between goldfinches and the environment. Based on body composition data for winter goldfinches, all but two birds sampled could endure a 15-h roost period at average overnight T e 's as low as-40°C. In contrast, if these birds were prevented from feeding the following day, only 30% could survive the imposition of a 39-h fast at average T e 's of-2°C. Winter roost-site selection may be more constrained by thermoregulatory considerations in small birds than in larger species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47760/1/442_2004_Article_BF00379484.pd

    Energy expenditure during egg laying is equal for early and late breeding free-living female great tits

    Get PDF
    In many bird populations, variation in the timing of reproduction exists but it is not obvious how this variation is maintained as timing has substantial fitness consequences. Daily energy expenditure (DEE) during the egg laying period increases with decreasing temperatures and thus perhaps only females that can produce eggs at low energetic cost will lay early in the season, at low temperatures. We tested whether late laying females have a higher daily energy expenditure during egg laying than early laying females in 43 great tits (Parus major), by comparing on the same day the DEE of early females late in their laying sequence with DEE of late females early in their egg laying sequence. We also validated the assumption that there are no within female differences in DEE within the egg laying sequence. We found a negative effect of temperature and a positive effect of female body mass on DEE but no evidence for differences in DEE between early and late laying females. However, costs incurred during egg laying may have carry-over effects later in the breeding cycle and if such carry-over effects differ for early and late laying females this could contribute to the maintenance of phenotypic variation in laying dates

    Testing an Emerging Paradigm in Migration Ecology Shows Surprising Differences in Efficiency between Flight Modes

    Get PDF
    To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors

    Win-stay, lose-switch and public information strategies for patch fidelity of songbirds with rare extra-pair paternity

    Get PDF
    Determining where organisms breed and understanding why they breed in particular locations are fundamental biological questions with conservation implications. Breeding-site fidelity is common in migratory, territorial songbirds and is typically thought to occur following reproductive success with a social mate and success of nearby conspecifics. It is currently unknown if frequency of extra-pair paternity in a population influences use of information about reproductive success of nearby conspecifics for site fidelity decisions. We investigated patch fidelity of white-eyed vireos (Vireo griseus) based on reproductive success and quantified frequency of extra-pair paternity. We found support only for females making patch fidelity decisions following reproductive success with a social mate. Patch fidelity of males was not associated with reproductive success of nearby conspecifics, suggesting males may not use this information when extra-pair paternity is infrequent or the association is non-existent in this species

    The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic

    Get PDF
    AbstractClimate change is causing rapid shifts in temperature while also increasing the frequency, duration, and intensity of extreme weather. In the northern hemisphere, the spring of 2013 was characterized as extreme due to record high snow cover and low temperatures. Studies that describe the effects of extreme weather on phenology across taxa are limited while morphological and physiological responses remain poorly understood. Stress physiology, as measured through baseline and stress-induced concentrations of cortisol or corticosterone, has often been studied to understand how organisms respond to environmental stressors. We compared body condition and stress physiology of two long-distance migrants breeding in low arctic Alaska – the white-crowned sparrow (Zonotrichia leucophrys) and Lapland longspur (Calcarius lapponicus) – in 2013, an extreme weather year, with three more typical years (2011, 2012, and 2014). The extended snow cover in spring 2013 caused measureable changes in phenology, body condition and physiology. Arrival timing for both species was delayed 4–5days compared to the other three years. Lapland longspurs had reduced fat stores, pectoralis muscle profiles, body mass, and hematocrit levels, while stress-induced concentrations of corticosterone were increased. Similarly, white-crowned sparrows had reduced pectoralis muscle profiles and hematocrit levels, but in contrast to Lapland longspurs, had elevated fat stores and no difference in mass or stress physiology relative to other study years. An understanding of physiological mechanisms that regulate coping strategies is of critical importance for predicting how species will respond to the occurrence of extreme events in the future due to global climate change
    • 

    corecore