471 research outputs found
Landslide assessment through integrated geoelectrical and seismic methods: a case study in Thungsong site, southern Thailand
Many landslides can cause significant damage to infrastructure, property, and human life. To study landslide structure and processes, geophysical techniques are most productive when employed in combination with other survey and monitoring tools, such as intrusive sampling. Here, the integration of electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods is used to assess landslides in Thungsong district, Nakhon Si Thammarat, the south of Thailand, where is a hilly and seasons of prolonged rainfall region. The 2D cross-plot analysis of P-wave velocity and resistivity values obtained by these two methods is introduced to identify potential landslide-prone zones in this region. The results of the 2D cross-plot model reveal detailed image of the subsurface conditions, highlighting areas of low P-wave velocity (lower than 600 m/s) and low resistivity (lower than 600 Ωm). These areas are indicative of weak zone and are potential to be sliding materials. Moreover, an intrusive sampling data from boreholes is also used for the calibration and validation geophysical data with geological data. This can improve the accuracy of landslide assessment and develop effective mitigation strategies to reduce the risk of landslides in this area. In addition of the 2D cross-plot, the volume of sliding material is also determined from the difference of the surface and slipping plane elevations. The volume calculation of sliding material is roughly 33447.76 m3. This approach provides a preliminary tool for landslide studies and monitoring landslides in this region, thus enabling an improved understanding of slope failure processes in this context, and the basis of a landslide mitigation strategy in the future
Landslide ground model development through integrated geoelectrical and seismic imaging in Thungsong district, Nakhon Si Thammarat, Thailand
A ground model of a shallow landslide in rainfall-induced slope failure of Thungsong, Nakhon Si Thammarat, southern Thailand is developed through an integrated geophysical approach, utilising electrical resistivity tomography and P-wave seismic refraction tomography (SRT) methods. Those two methods were applied to assess landslide structure and study deformation mechanisms along four profiles. Beside the four profiles there is another profile, which was acquired near an borehole and used for the calibration with geological data. Our results show subsurface structures in terms of the ground model used to determine stratigraphic layers, zones of saturation or groundwater table, and significant differences between the landslide slip material and the underlying bedrock. The clay-rich zones (resistivity less than 500 Ωm) in the colluvium on the relatively steep slope, show enhanced potential for landslides. This silty clay plays an important role for landslide activation in this site. Moreover, a combination of steep slopes, shallow basement rocks overlain by clay-rich colluvium, and seasonally high rain fall leads to landslides in the region. The ground model produced by geophysical imaging for this region achieves a comprehensive understanding of the structure and lithology of a complex landslide system and overcomes the limitations of remote-sensing data or isolated intrusive sampling techniques alone
Landslide assessment through integrated geoelectrical and seismic methods: a case study in Thungsong site, southern Thailand
Many landslides can cause significant damage to infrastructure, property, and human life. To study landslide structure and processes, geophysical techniques are most productive when employed in combination with other survey and monitoring tools, such as intrusive sampling. Here, the integration of electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods is used to assess landslides in Thungsong district, Nakhon Si Thammarat, the south of Thailand, where is a hilly and seasons of prolonged rainfall region. The 2D cross-plot analysis of P-wave velocity and resistivity values obtained by these two methods is introduced to identify potential landslide-prone zones in this region. The results of the 2D cross-plot model reveal detailed image of the subsurface conditions, highlighting areas of low P-wave velocity (lower than 600 m/s) and low resistivity (lower than 600 Ωm). These areas are indicative of weak zone and are potential to be sliding materials. Moreover, an intrusive sampling data from boreholes is also used for the calibration and validation geophysical data with geological data. This can improve the accuracy of landslide assessment and develop effective mitigation strategies to reduce the risk of landslides in this area. In addition of the 2D cross-plot, the volume of sliding material is also determined from the difference of the surface and slipping plane elevations. The volume calculation of sliding material is roughly 33447.76 m3. This approach provides a preliminary tool for landslide studies and monitoring landslides in this region, thus enabling an improved understanding of slope failure processes in this context, and the basis of a landslide mitigation strategy in the future
Combined electrical resistivity tomography and ground penetrating radar to map Eurasian badger (Meles Meles) burrows in clay-rich flood embankments (levees)
Globally, earth embankments are used to protect against flooding. Raised above the surrounding water table, these embankments make ideal habitats for many burrowing animals whose burrows can impact their structural integrity. Ground Penetrating Radar (GPR) is commonly used to identify and map animal burrows and other small cavities. However, the depth of investigation of a GPR survey can be severely limited in saline and clay-rich environments, soil properties commonly associated with flood embankments. In contrast, Electrical Resistivity Tomography (ERT) can image subsurface voids in conductive ground conditions but has been rarely used to image animal burrows. Here we aim to assess the efficacy of ERT and GPR to image two badger burrow networks, called ‘setts’, located in clay embankments on the River Ouse, Yorkshire, UK. The two setts were excavated to validate the geophysical results, and the soil was characterised through logging and geotechnical analysis to develop a ground model of the site. We find that ERT can accurately resolve tunnels down to 1.5 m depth, map the structure of a multi-entrance badger sett and successfully identify the end of the tunnels. This result compares favourably to the GPR surveys, which mapped all but the deepest tunnels, limited by its penetration depth due to clay soils. Our results show that ERT can be used as a primary survey tool for animal burrows in clay-rich environments and can be validated using co-located GPR surveys if penetration depth is sufficient. The implications of this study may allow embankment managers to map burrow networks, assess flood embankment stability, minimise repair costs, and reduce unexpected failures during flood events. Additionally, a better understanding of how, for example, local heterogeneities impact badgers' burrow geometry may be achievable using these geophysical methods, as they provide a non-destructive, repeatable method for imaging setts
Brief communication: The role of geophysical imaging in local landslide early warning systems
We summarise the contribution of geophysical imaging to local landslide early warning systems (LoLEWS), highlighting how the design and monitoring components of LoLEWS benefit from the enhanced spatial and temporal resolutions of time-lapse geophysical imaging. In addition, we discuss how with appropriate laboratory-based petrophysical transforms, geophysical data can be crucial for future slope failure forecasting and modelling, linking other methods of remote sensing and intrusive monitoring across different scales. We conclude that in light of ever-increasing spatiotemporal resolutions of data acquisition, geophysical monitoring should be a more widely considered technology in the toolbox of methods available to stakeholders operating LoLEWS
Collisions between equal sized ice grain agglomerates
Following the recent insight in the material structure of comets,
protoplanetesimals are assumed to have low densities and to be highly porous
agglomerates. It is still unclear if planetesimals can be formed from these
objects by collisional growth. Therefore, it is important to study numerically
the collisional outcome from low velocity impacts of equal sized porous
agglomerates which are too large to be examined in a laboratory experiment. We
use the Lagrangian particle method Smooth Particle Hydrodynamics to solve the
equations that describe the dynamics of elastic and plastic bodies.
Additionally, to account for the influence of porosity, we follow a previous
developed equation of state and certain relations between the material strength
and the relative density. Collisional growth seems possible for rather low
collision velocities and particular material strengths. The remnants of
collisions with impact parameters that are larger than 50% of the radius of the
colliding objects tend to rotate. For small impact parameters, the colliding
objects are effectively slowed down without a prominent compaction of the
porous structure, which probably increases the possibility for growth. The
protoplanetesimals, however, do not stick together for the most part of the
employed material strengths. An important issue in subsequent studies has to be
the influence of rotation to collisional growth. Moreover, for realistic
simulations of protoplanetesimals it is crucial to know the correct material
parameters in more detail.Comment: 7 pages, 11 figures, accepted by A&
Mechanisms and Geochemical Models of Core Formation
The formation of the Earth's core is a consequence of planetary accretion and
processes in the Earth's interior. The mechanical process of planetary
differentiation is likely to occur in large, if not global, magma oceans
created by the collisions of planetary embryos. Metal-silicate segregation in
magma oceans occurs rapidly and efficiently unlike grain scale percolation
according to laboratory experiments and calculations. Geochemical models of the
core formation process as planetary accretion proceeds are becoming
increasingly realistic. Single stage and continuous core formation models have
evolved into multi-stage models that are couple to the output of dynamical
models of the giant impact phase of planet formation. The models that are most
successful in matching the chemical composition of the Earth's mantle, based on
experimentally-derived element partition coefficients, show that the
temperature and pressure of metal-silicate equilibration must increase as a
function of time and mass accreted and so must the oxygen fugacity of the
equilibrating material. The latter can occur if silicon partitions into the
core and through the late delivery of oxidized material. Coupled dynamical
accretion and multi-stage core formation models predict the evolving mantle and
core compositions of all the terrestrial planets simultaneously and also place
strong constraints on the bulk compositions and oxidation states of primitive
bodies in the protoplanetary disk.Comment: Accepted in Fischer, R., Terasaki, H. (eds), Deep Earth: Physics and
Chemistry of the Lower Mantle and Core, AGU Monograp
Prospecting for Energy-Rich Renewable Raw Materials: \u3cem\u3eAgave\u3c/em\u3e Leaf Case Study
Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like--rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition
- …