13 research outputs found

    Controlled Stochastic Differential Equations under Poisson Uncertainty and with Unbounded Utility

    Get PDF
    The present paper is concerned with the optimal control of stochastic differential equations, where uncertainty stems from one or more independent Poisson processes. Optimal behavior in such a setup (e.g., optimal consumption) is usually determined by employing the Hamilton-Jacobi-Bellman equation. This, however, requires strong assumptions on the model, such as a bounded utility function and bounded coefficients in the controlled differential equation. The present paper relaxes these assumptions. We show that one can still use the Hamilton-Jacobi-Bellman equation as a necessary criterion for optimality if the utility function and the coefficients are linearly bounded. We also derive sufficiency in a verification theorem without imposing any boundedness condition at all. It is finally shown that, under very mild assumptions, an optimal Markov control is optimal even within the class of general controls. --Stochastic differential equation,Poisson process,Bellman equation

    "Ito's Lemma" and the Bellman equation for Poisson processes: An applied view

    Get PDF
    Rare and randomly occurring events are important features of the economic world. In continuous time they can easily be modeled by Poisson processes. Analyzing optimal behavior in such a setup requires the appropriate version of the change of variables formula and the Hamilton-Jacobi-Bellman equation. This paper provides examples for the application of both tools in economic modeling. It accompanies the proofs in Sennewald (2005), who shows, under milder conditions than before, that the Hamilton-Jacobi-Bellman equation is both a necessary and sufficient criterion for optimality. The main example here consists of a consumption-investment problem with labor income. It is shown how the Hamilton-Jacobi-Bellman equation can be used to derive both a Keynes-Ramsey rule and a closed form solution. We also provide a new result. --Stochastic differential equation,Poisson process,Bellman equation,Portfolio optimization,Consumption optimization

    “Itô’s Lemma“ and the Bellman Equation for Poisson Processes: An Applied View

    Get PDF
    Using the Hamilton-Jacobi-Bellman equation, we derive both a Keynes-Ramsey rule and a closed form solution for an optimal consumption-investment problem with labor income. The utility function is unbounded and uncertainty stems from a Poisson process. Our results can be derived because of the proofs presented in the accompanying paper by Sennewald (2006). Additional examples are given which highlight the correct use of the Hamilton-Jacobi-Bellman equation and the change-of-variables formula (sometimes referred to as “Ito’s-Lemma”) under Poisson uncertainty.stochastic differential equation, Poisson process, Bellman equation, portfolio optimization, consumption optimization

    "Itô's Lemma" and the Bellman equation: An applied view

    Get PDF
    Rare and randomly occurring events are important features of the economic world. In continuous time they can easily be modeled by Poisson processes. Analyzing optimal behavior in such a setup requires the appropriate version of the change of variables formula and the Hamilton-Jacobi-Bellman equation. This paper provides examples for the application of both tools in economic modeling. It accompanies the proofs in Sennewald (2005), who shows, under milder conditions than before, that the Hamilton-Jacobi-Bellman equation is both a necessary and sufficient criterion for optimality. The main example here consists of a consumption-investment problem with labor income. It is shown how the Hamilton-Jacobi-Bellman equation can be used to derive both a Keynes-Ramsey rule and a closed form solution. We also provide a new result. --Stochastic differential equation,Poisson process,Bellman equation,Portfolio optimization,Consump

    Stochastic Control, Optimal Saving, and Job Search in Continuous Time

    No full text
    Economic uncertainty may affect significantly people’s behavior and hence macroeconomic variables. It is thus important to understand how people behave in presence of different kinds of economic risk. The present dissertation focuses therefore on the impact of the uncertainty in capital and labor income on the individual saving behavior. The underlying uncertain variables are here modeled as stochastic processes that each obey a specific stochastic differential equation, where uncertainty stems either from Poisson or Lévy processes. The results on the optimal behavior are derived by maximizing the individual expected lifetime utility. The first chapter is concerned with the necessary mathematical tools, the change-of-variables formula and the Hamilton-Jacobi-Bellman equation under Poisson uncertainty. We extend their possible field of application in order make them appropriate for the analysis of the dynamic stochastic optimization problems occurring in the following chapters and elsewhere. The second chapter considers an optimum-saving problem with labor income, where capital risk stems from asset prices that follow geometric L´evy processes. Chapter 3, finally, studies the optimal saving behavior if agents face not only risk but also uncertain spells of unemployment. To this end, we turn back to Poisson processes, which here are used to model properly the separation and matching process

    Stochastic Control, Optimal Saving, and Job Search in Continuous Time

    Get PDF
    Economic uncertainty may affect significantly people’s behavior and hence macroeconomic variables. It is thus important to understand how people behave in presence of different kinds of economic risk. The present dissertation focuses therefore on the impact of the uncertainty in capital and labor income on the individual saving behavior. The underlying uncertain variables are here modeled as stochastic processes that each obey a specific stochastic differential equation, where uncertainty stems either from Poisson or Lévy processes. The results on the optimal behavior are derived by maximizing the individual expected lifetime utility. The first chapter is concerned with the necessary mathematical tools, the change-of-variables formula and the Hamilton-Jacobi-Bellman equation under Poisson uncertainty. We extend their possible field of application in order make them appropriate for the analysis of the dynamic stochastic optimization problems occurring in the following chapters and elsewhere. The second chapter considers an optimum-saving problem with labor income, where capital risk stems from asset prices that follow geometric L´evy processes. Chapter 3, finally, studies the optimal saving behavior if agents face not only risk but also uncertain spells of unemployment. To this end, we turn back to Poisson processes, which here are used to model properly the separation and matching process
    corecore