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Abstract: 

Rare and randomly occurring events are important features of the economic world. In continuous time they can easily 
be modeled by Poisson processes. Analyzing optimal behavior in such a setup requires the appropriate version of the 
change of variables formula and the Hamilton-Jacobi-Bellman equation. This paper provides examples for the 
application of both tools in economic modeling. It accompanies the proofs in Sennewald (2005), who shows, under 
milder conditions than before, that the Hamilton-Jacobi-Bellman equation is both a necessary and sufficient criterion 
for optimality. The main example here consists of a consumption-investment problem with labor income. It is shown 
how the Hamilton-Jacobi-Bellman equation can be used to derive both a Keynes-Ramsey rule and a closed form 
solution. We also provide a new result. 
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1 Introduction

Poisson processes as a source of uncertainty are a standard tool for modeling rare and

randomly occurring events. These processes can be found, among others, in quality-

ladder models of growth (e.g., Grossman and Helpman (1991), Aghion and Howitt

(1992, 1998)), in the endogenous fluctuations and growth literature with uncertainty

(e.g., Wälde (2005), Steger (2005)), in the labor market matching literature (e.g.,

Moen (1997)), in monetary economics (e.g., Kiyotaki and Wright (1991)), and in

finance (e.g., Merton (1971)). The two “major tools” required when working with

Poisson processes, and with stochastic processes in general, are the change-of-variables

formula (CVF) for computing stochastic differentials and, in so far as optimal control

is concerned, the Hamilton-Jacobi-Bellman (HJB) equation.3

Despite the widespread use, applying the HJB equation as a necessary or sufficient

criterion for optimality has required so far a set of restrictive or simplifying assump-

tions. In particular, the boundedness of the instantaneous utility (or cost) function

and of the coefficients in the constraint, which is given as a stochastic differential equa-

tion (SDE), has been in most cases indispensable for the use of the HJB equation

as a necessary criterion, see, e.g., Gihman and Skorohod (1972) or Dempster (1991).

Other authors as, e.g., Kushner (1967) require, instead of this boundedness condi-

tion, the value function to be contained in the domain of the infinitesimal generator

of the controlled process.4 However, both conditions are not convenient for economic

modeling since, on the one hand, in most cases neither utility and cost functions

nor constraint coefficients are bounded and, on the other hand, to check whether the

value function belongs to the mentioned domain requires in general considerably cal-

culation. To solve this problem, Sennewald (2005) shows that the HJB equation can

still be used as a necessary criterion for optimality if, instead of boundedness, only

linear boundedness is assumed.5 Apart from a terminal condition, no boundedness

3Some readers may know the CVF better under the term Ito’s lemma and the HJB equation
under the name Bellman equation, which are the corresponding notations for a framework with
Brownian motion as noise.

4The domain of the infinitesimal generator of a process X (t) consists of all once continously
differentiable function V for that the limit limh&0 [EtV (X (t+ h))− V (X (t))] /t exist.

5Notice that, if the value function is sufficiently smooth, the boundedness assumptions are suffi-
cient for the value function to be in the domain of the extended generator. Sennewald (2005) shows
implicitely that this property of the value function holds also for the more general case with linearly
bounded utility and coeffcients.
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condition is even required for deriving the sufficiency of the HJB equation.

The present paper accompanies the rigorous proofs in Sennewald (2005) and is

directed at the applied model builder. It presents examples for the application of

CVF and the HJB equation. These examples should allow to work with Poisson

uncertainty in other setups as well. Both papers have the intention to encourage a

more widespread use of Poisson processes under more general assumptions concerning

the economic environment.

After presenting some versions of CVF in the subsequent section, we provide

two applications for it: A derivation of a household’s budget constraint and of the

corresponding HJB equation for an optimum-consumption problem. In section 3

we present a typical maximization problem, consisting of determining a household’s

optimal consumption and investment behavior in the presence of a deterministic flow

of labor income. We use the HJB equation to derive both a Keynes-Ramsey rule and

a closed form solution.

The CVFs presented here are special cases of the general CVF for jump processes

in Garcia and Griego (1994). The maximization problem in section 3 is a "standard"

optimal consumption and portfolio problem as considered, e.g., inMerton (1969, 1971)

and Aase (1984), but allows for labor income in a Poisson framework. Merton (1971)

derives a solution including wages when uncertainty of the risky investment is modeled

by Brownian motion. Aase (1984) extends Merton’s model by introducing random

jumps. But even though he gives hints how to proceed if wages as an additional

source of income are taken into account, no solution for this case is presented.

Keynes-Ramsey rules have been derived before, e.g., by Cass (1965) and Koop-

mans (1965) in a deterministic growth model, by Turnovsky (1999) in a model of sto-

chastic growth with Brownian motion, by Steger (2005) in a Ak-type growth model

with jumps, or by Wälde (1999b) for an optimum-consumption problem similar to

the one presented here. But whereas Wälde (1999b) assumes that the investment

into the risky asset, which is there investment into R&D, vanishes as long as R&D is

not successful, we follow the “tradition” of Merton and assume that the risky asset

yields at least a certain deterministic return. A Keynes Ramsey rule for this setup is

a new result as well.
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2 Change of Variables Formula ("Ito’s Lemma")

This section first presents various versions of CVF. They are easily derived from

Sennewald (2005, theorem 6.1), which in turn is a simple corollary of Garcia and

Griego (1994). The CVF is a “rule” for computing the differential of functions of

stochastic processes.

The second subsection provides a typical application of the CVF by showing how

the budget constraint of a household can be derived via CVF. The third subsec-

tion shows how the HJB equation for a simple household’s maximization problem is

heuristically obtained, also by using CVF.

2.1 Simple corollaries

In the following, we deal with uni- or multivariate stochastic processes x (t) that,

starting at time t0 in x (t0), obey stochastic differential equations (SDEs) of the form

dx (t) = α (t, x (t)) dt+
dX

k=1

βk(t, x (t−))dqk (t) , x (t0) ∈ Rn, (1)

where α and β are non-stochastic continuous functions and q1, . . . , qd independent

Poisson processes starting in t0.6 It turns out that the process x (t) is a so called

cádlág process.7 That is, the paths of x (t) are continuous from the right with left

limits. The left limit is denoted by x (t−) ≡ lims↑t x (s). Thus, due to the continuity

of the βk, the left limit of βk(t, x (t)) is given by βk(t, x (t−)).

At first glance, it might appear strange that one uses not βk(t, x (t)) but its left

limit βk(t, x (t−)) as integrand in SDE (1). But beyond analytical reasons, there is

a simple heuristic explanation why this should be like this. If Poisson process qk (t)

jumps, i.e., dqk (t) = 1, then x (t) jumps from x (t−) to x (t), where the jump size is

given by βk. It would not make much sense if the jump size would depend on the post-

jump state x (t). It is rather convenient to assume that the jump size is determined

by the state just before the jump occurs – which is formally x (t−). Thus, the jump

size itself is then given by βk(t, x (t−)).

6A detailed analysis of SDEs with Poisson processes can be found, e.g., in Protter (1995) and
Garcia and Griego (1994).

7The expression cádlág is an acronym from the french "continu a droite limites a gauche".
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Corollary 2.1 (1 Poisson process q (t)) Consider a univariate stochastic process x (t)
given as solution of the SDE

dx (t) = α (t, x (t)) dt+ β (t, x (t−)) dq (t) .

Then, for a once continuously differentiable function f : [0,∞)×R→ R, the process
f (t, x (t)) is cádlág, and its differential is given by

df (t, x (t)) = [ft (t, x (t)) + fx (t, x (t))α (t, x (t))] dt

+ [f (t, x (t−) + β (t, x (t−)))− f (t, x (t−))] dq (t) ,

where ft and fx denote the partial derivatives of f with respect to the time and the

state argument, t and x, respectively.

Intuitively speaking, the differential of a function is given by the ”normal terms”,

i.e., the partial derivatives with respect to its first argument t and with respect to

its second argument x times changes per unit of time (1 for the first argument and

α (t, x (t)) for the second) times dt, and by a ”jump term”. Whenever the process

q (t) increases, x (t) increases by β (t, x (t−)), and the function jumps from f (t, x (t−))

to f (t, x (t)) = f (t, x (t−) + β (t, x (t−))).

The cádlág property of f (t, x (t)) holds trivially for all continuous functions f ,

and we thus do not mention it anymore in the following corollaries.

Corollary 2.2 (Many independent Poisson processes qk (t)) Consider the univariate
stochastic process x (t) that obeys the SDE

dx (t) = α (t, x (t)) dt+
Xn

k=1
βk (t, x (t−)) dqk (t) .

For a once continuously differentiable function f : [0,∞)×R→ R, the differential of
the process f (t, x (t)) is given by

df (t, x (t)) = [ft (t, x (t)) + fx (t, x (t))α (t, x (t))] dt

+
Xn

k=1
[f (t, x (t−) + βk (t, x (t−)))− f (t, x (t−))] dqk (t) .

Again, the differential of a function is given by the ”normal terms” and by a ”jump
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term”. Whenever any of the processes qk (t) increases, x (t) increases by βk (t, x (t−)),

and the function jumps from f (t, x (t−)) to f (t, x (t−) + βk (t, x (t−))).

Corollary 2.3 (Multivariate stochastic process) Consider the n-dimensional stochas-
tic process x (t) = (x1 (t) , ..., xn (t)) that follows the SDE

dxi (t) = αi (t, x (t)) dt+ βi (t, x (t−)) dqi (t) , i = 1, . . . n.

For a once continuously differentiable function f : [0,∞) × Rn → R, the process
f (t, x (t)) obeys

df (t, x (t)) =
h
ft (t, x (t)) +

Xn

i=1
fxi (t, x (t))αi (t, x (t))

i
dt

+
Xn

i=1

h
f
³
t, x (t−) +

−→
β i (t, x (t−))

´
− f (t, x (t−))

i
dqi (t) ,

where
−→
β i := (0, · · · , 0, βi, 0, · · · , 0, )T denotes a vector of functions that is βi (t, x (t−))

in the i-th component and 0 otherwise.

Here, the ”normal terms” include partial derivatives with respect to all the xi.

Whenever any of the processes qi (t) jumps, the i-th component of x (t) increases by

βi (t, x (t−)). The ”jump term” therefore makes the function jump from f (t, x (t−))

to f
³
t, x (t−) +

−→
β i (t, x (t−))

´
.

2.2 Application I: The budget constraint

Most maximization problems require a constraint. For a household, this is usually

the budget constraint. It is shown here how the structure of the budget constraint

depends on the economic environment the household finds itself in, and how CVF is

required.

Let wealth at time t, a (t), be given by the number of stocks, n (t), a household

owns times their price, v (t). That is, a (t) = n (t) v (t). Let the price follow a

process that is exogenous to the household (but potentially endogenous in general

equilibrium),

dv (t) = αv (t) dt+ βv (t−) dq (t) ,
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where α, β ∈ R. Hence, the price grows with the continuous rate α and at discrete
random times it jumps by β percent. The random times are modeled by the jump

times of a Poisson process q (t) with arrival rate λ, which is the probability that in

the current period a price jump occurs. The expected (or average) growth rate is

then given by α+ λβ.

Let the household earn dividend payments, π (t) per unit of asset it owns, and

labor income, w (t). Assume furthermore that it spends p (t) c (t) on consumption,

where c (t) denotes the consumption quantity and p (t) the price of one unit of the

consumption good. When buying stocks is the only way of saving, the number of

stocks held by the household changes in a deterministic way according to

dn (t) =
n (t)π (t) + w (t)− p (t) c (t)

v (t)
dt.

When savings n (t) π (t) +w (t)− p (t) c (t) are positive, the number of stocks held by

the household increases by savings divided by the price of one stock. When savings

are negative, the number of stocks decreases.

The change of the household’s wealth, i.e., the household’s budget constraint, is

then given by applying CVF to a (t) = n (t) v (t). Using corollary 2.3 with f (t, x1, x2) =

x1x2, we obtain

da (t) =

½
v (t)

n (t)π (t) + w (t)− p (t) c (t)

v (t)
+ n (t)αv (t)

¾
dt

+ {n (t−) [v (t−) + βv (t−)]− n (t−) v (t−)} dq (t)
= [r (t) a (t) + w (t)− p (t) c (t)] dt+ βa (t−) dq (t) , (2)

where the interest-rate is defined as

r (t) ≡ π (t)

v (t)
+ α.

This is a very intuitive budget constraint: As long as the asset price does not jump,

i.e., dq (t) = 0, the household’s wealth increases by current savings, r (t) a (t)+w (t)−
p (t) c (t), where the interest rate, r (t), consists of dividend payments in terms of the

asset price plus the deterministic growth rate of the asset price. If a price jump occurs,

i.e., dq (t) = 1, wealth jumps, as the price, by β percent, which is the stochastic part

7



of the overall interest-rate. Altogether, the average interest rate amounts to r (t)+λβ.

2.3 Application II: The Hamilton-Jacobi-Bellman equation

In this subsection we show how an appropriate HJB equation can be heuristically

derived if one faces a stochastic control problem. For all practical purposes, this only

requires the application of CVF.

Take, for example, a simple optimum-consumption problem of a household, con-

sisting in finding an optimal consumption process c∗ (t) that maximizes the expected

lifetime utility,

Et

Z ∞

t0

e−ρ(t−t0)u (c (t)) dt, (3)

subject to the budget constraint derived in the last subsection,

da (t) = [r (t) a (t) + w (t)− p (t) c (t)] dt+ βa (t−) dq (t) , a (t0) > 0. (4)

Et denotes the expectation operator conditional on wealth in t, a (t). As a starting

point, one writes the HJB equation in the general form as8

ρV (t, a (t)) = max
c(t)

½
u (c (t)) +

1

dt
EdV (t, a (t))

¾
, (5)

where the maximum is achieved by the optimal consumption choice c∗ (t), and V

denotes the value function9

V (t, a (t)) ≡ Et

Z ∞

t

e−ρ(s−t)u (c∗ (s)) ds,

which is the maximized expected lifetime utility in t given wealth a (t). The value

function therefore presents the maximal value, in terms of utility units, an amount,

a (t), of wealth presents for the household at time t. The general HJB equation (5) says

that the household chooses consumption in t such that it maximizes its instantaneous

return from consumption, which consists of the instantaneous utility flow, u (c (t)),

plus the change in the expected value of wealth, 1
dt
EdV (t, a (t)), corresponding to the

8See appendix A for a heuristical derivation.
9Later, in the example presented in section 3, we shall go further into detail about the considered

controls.
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consumption choice in t. That the household does not have to take into account future

utility, but rather 1
dt
EdV (t, a (t)), is due to the derivation of the HJB equation, where

optimal behavior after t is assumed, cf. appendix A. Nevertheless, the HJB equation

tells furthermore that the intertemporal return from holding a (t), ρV (t, a (t)), is

given by the return from the optimal consumption in t, u (c∗ (t)) + 1
dt
EdV (t, a∗ (t)).

Assume that V is once continuously differentiable. Obtaining the HJB equation for

a specific maximization problem then requires (i) application of CVF on V (t, a (t)),

(ii) computing expectations and (iii) “dividing” by dt.

Taking the budget constraint (4), CVF from corollary 2.1 yields

dV (t, a (t)) = {Vt (t, a (t)) + Va (t, a (t)) [r (t) a (t) + w (t)− p (t) c∗ (t)]} dt
+ [V (t, (1 + β) a (t−))− V (t, a (t−))] dq (t) .

With Edqt = λdt, we get

EdV (t, a (t)) = {Vt (t, a (t)) + Va (t, a (t)) [r (t) a (t) + w (t)− p (t) c∗ (t)]} dt
+λ [V (t, (1 + β) a (t))− V (t, a (t))] dt.

Dividing by dt gives finally the HJB equation for the maximization problem consisting

of (3) and (4):

ρV (t, a (t)) = max
c(t)≥0


u (c (t)) + Vt (t, a (t))

+Va (t, a (t)) [r (t) a (t) + w (t)− p (t) c∗ (t)]

+λ [V (t, (1 + β) a (t))− V (t, a (t))]

 . (6)

This approach is very practical, a rigorous background with the necessary assumptions

can be found in Sennewald (2005). Note that with this derivation we have implicitly

shown that the HJB equation is a necessary criterion for optimality. Hence, the value

function must satisfy the HJB equation (6), and the maximum must be attained by

the optimal consumption. In the following section, we show how this fact can be used

to do further analysis (e.g., to derive a Keynes-Ramsey) if one does not explicitly

know neither the value function nor the optimal control.
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3 A typical maximization problem

We now present a typical maximization problem, which consists in determining a

household’s optimal consumption and investment behavior. Finding closed form ex-

pressions for the optimal controls is usually restricted to special cases. Nevertheless,

for optimum-consumption problems it is usually possible to derive a Keynes-Ramsey

rule. We show how this can be achieved, making use of the HJB equation as a

necessary criterion for optimality. Then the closed form solution is presented, and

its optimality is verified by the fact that the HJB equation together with a certain

terminal condition yields a sufficient criterion for optimality.

3.1 The problem

3.1.1 The Setup

Consider a household that is endowed with some initial wealth a (t0) > 0. At each

instant, the household can invest its wealth a (t) in both a risky and a safe asset. The

share of wealth the household holds in the risky asset is denoted by θ (t). The price

v1 (t) of one unit of the risky asset obeys the SDE

dv1 (t) = r1v1 (t) dt+ βv1 (t−) dq (t) , (7)

where r1 ∈ R and β > 0. That is, the price of the risky asset grows at each instant with

a fixed rate r1 and at random points in time it jumps by β percent. The randomness

comes from the well-known Poisson process q (t) with arrival rate λ. The price v2 (t)

of one unit of the safe asset is assumed to follow

dv2 (t) = r2v2 (t) dt, (8)

where r2 ≥ 0. Let the household receive a fixed wage income w and spend c (t) ≥ 0
on consumption.10 Then, in analogy to (2) or derived as in appendix B by the “self-

10Unlike in subsections 2.2 and 2.3, we consider here real variables expressed in terms of the
consumption good.
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financing” concept, the household’s budget constraint reads11

da (t) = {[θ (t) r1 + (1− θ (t)) r2] a (t) + w − c (t)} dt+ βθ (t−) a (t−) dq (t) . (9)

We allow wealth to become negative, but assume the debts always be covered by the

household’s lifetime labor income discounted with the safe interest rate, r2. That is,

a (t) > −w/r2 for all t. Let the household’s time preference rate be given by the
constant ρ > 0 and assume that the planning horizon is infinite. Forming expecta-

tions about future consumption streams and given the CRRA12 instantaneous utility

function

u (c) =
c1−σ − 1
1− σ

, σ > 0, σ 6= 1, 13 (10)

the household’s objective is given by maximizing the expected lifetime utility,

E

Z ∞

t0

e−ρ(t−t0)u (c (t)) dt, (11)

subject to its budget constraint (9). The control variables of the household are the

nonnegative consumption stream, c (t), and the share, θ (t), held in the risky asset.

To avoid a trivial investment problem we assume

r1 < r2 < r1 + λβ. (12)

That is, the guaranteed return of the risky asset, r1, is lower than the return of the

riskless asset, r2, whereas, on the other hand, the expected return of the risky asset,

r1 + λβ, shall be greater than r2.

3.1.2 Classes of controls

There exist various types of controls that may be considered, for example, feedback

controls, which depend on the whole history of a (t), Markov controls, which depend

on current time and wealth, or generalized controls, which do not depend on “any-

11Another approach to derive the budget constraint is to start with the assumption of a "self-
financing portfolio". The derivation is presented in appendix B.
12CRRA: constant relative risk aversion.
13The special case σ = 1, i.e. u (c) = log c, is considered in appendix C, where Keynes-Ramsey

rule and closed form solution are presented.
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thing” and are merely assumed to be adapted. Here, and usually in other applications

as well, only Markov controls are considered. Reasons therefor are:

• Markov controls are easy to handle. That is, since they depend only on current
time and wealth, one exactly knows what do to if at time t wealth a (t) is

observed.

• The HJB equation provides a very powerful tool to characterize and verify

optimal Markov controls.

• If the controlled process (which is here the household’s wealth) is a Markov
process, the performance of optimal Markov controls is in general as that good

as for generalized controls, see, e.g., Sennewald (2004, theorem 5.5).

Assume that there exists optimal Markov controls, c∗ (t) and θ∗ (t), maximizing

the expected lifetime utility (11) subject to budget constraint (9). Then we define

the value function V as14

V (a (t0)) ≡ E

Z ∞

t0

e−ρ(t−t0)u (c∗ (t)) dt.

3.2 Solution strategies

Finding the optimal Markov controls can be undertaken by the HJB equation, which

derived as in subsection 2.3 or taken from Sennewald (2005), reads for all a > −w/r2

ρV (a) = max
{c≥0,θ∈R}

(
u(c) + [(θr1 + (1− θ) r2) a+ w − c]V 0 (a)

+λ [V (ã)− V (a)]

)
, (13)

where ã ≡ (1 + θβ) a denotes the post-jump wealth if at wealth a a jump in the risky

asset price occurs. The maximum is achieved by the optimal Markov control values,

c∗ and θ∗, corresponding to state a.15 Since, together with a terminal condition,

the HJB equation presents a sufficient criterion for optimality (cf. Sennewald (2005,

14One can show that the value function in this example does not depend on initial time but
on initial wealth only. An “ex-post proof” is given by subsection 3.4, where we derive an explicit
expression for the value function, see equation (32).
15Since the value function does not depend on current time, one can show that the optimal policy

does not depend on time neither.
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theorem 5.3) ), it can be used to verify whether a candidate for the optimal solution is

indeed optimal. How to derive such candidates and how to undertake the verification

is shown in subsection 3.4.

Unfortunately, finding explicit expressions for the optimal controls is rather the

exception. Nonetheless, starting with the HJB equation one can at least derive some

characteristics of the optimal behavior for the case where a closed form solution can-

not be achieved. For this purpose one uses that the HJB equation presents also a

necessary condition for optimality, see Sennewald (2005, theorem 5.1). In the con-

sidered optimum consumption and portfolio problem this leads to a stochastic form

of the Keynes-Ramsey rule for the optimal consumption path, as is shown in the

subsection 3.3. Notice that, while a closed form solution yields the absolute level of

optimal consumption, this rule describes “only” the optimal change in consumption

over time.

3.3 The Keynes-Ramsey rule

In the present section we show how, starting from the HJB equation as a necessary

criterion for optimality, one can derive a Keynes-Ramsey rule if a candidate for a

closed form solution is not deducible. This rule tells us how the optimal consumption

must evolve over time. For the HJB equation to become necessary, certain conditions

must be satisfied, see Sennewald (2005, theorem 5.1). In particular, the utility func-

tion (10) as well as the coefficients in the budget constraint (9) are required to be

linearly bounded. That is, there must exist real numbers κ, µi, νi ∈ R+, i = 1, 2, such
that for all a > −w/r2, c ≥ 0 and θ ∈ R,

|u (c)| ≤ κ (1 + c) , (14)

|[θr1 + (1− θ) r2] a+ w − c| ≤ µ1 + ν1 |a| , (15)

and

|βθa| ≤ µ2 + ν2 |a| . (16)
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Condition (14) is trivially satisfied if the risk aversion parameter σ in utility function

(10) lies between 0 and 1.16 In the case of log-utility or for σ > 1, utility is bounded

as long as consumption does not tend to 0. We assume therefore that there exists a

threshold ε > 0 the consumption expenditure never falls below. This assumption is

justified if one considers that the marginal utility becomes ∞ as consumption tends

to 0. Thus, the household will smooth its consumption stream such that consumption

never becomes 0. Then, if we choose ε small enough, we can conclude that utility is

bounded by
¡
ε−(σ−1) − 1¢ / (σ − 1).

For inequalities (15) and (16) to be satisfied, we introduce the following control

space constraint. Assume that consumption shall not exceed current wealth plus

lifetime labor income, w/r2. That is,

0 ≤ c (t) ≤ a (t) +
w

r2
. (17)

Furthermore, we do not allow short-selling of the risky asset, whereas, on the other

hand, the household can finance risky investment by short-selling the safe asset. The

limit for this kind of borrowing is again given by lifetime labor income. That is,

[1− θ (t)] a (t) ≥ −w/r2. The constraint for the share held in the risky asset thus
reads:

0 ≤ θ (t) a (t) ≤ a (t) +
w

r2
. (18)

Then the set of admissible controls contains all cádlág processes c (t) and θ (t) satisfy-

ing conditions (17) and (18) such that the associated wealth process always remains

above the level −w/r2. Now it is easy to show that for all admissible c (t) and θ (t) the
linear boundedness conditions (15) and (16) are satisfied. Assume that the optimal

Markov controls, c∗ (t) and θ∗ (t), are in the set of admissible controls.

Beside the boundedness conditions, a certain regularity condition must hold, and

the expected present values of the optimal controls must be finite, see assumption (H3)

and (H4) in Sennewald (2005). But for these technical conditions to be satisfied, we

have merely to assume the time preference rate ρ to be high enough, cf. remark 3.1(ii)

in Sennewald (2004). Then, assuming that the value function is sufficiently smooth,

the HJB equation is a necessary criterion for optimality.

16Choose, e.g., κ = 1
1−σ .
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Since c∗ and θ∗ maximize the righ-hand side in the HJB equation (13), the follow-

ing first-order conditions must be satisfied, if c∗ and θ∗ are not corner solutions with

respect to the constraints (17) and (18):

u0 (c∗) = V 0 (a) (19)

and

V 0 (a) (r1 − r2) a+ λV 0 (ã∗)βa = 0, (20)

where ã∗ ≡ (1 + θ∗β) a denotes the post-jump wealth for the optimal investment

behavior. Replacing in equation (20) V 0 with u0 according to (19) yields for a 6= 0

u0 (c̃∗)
u0 (c∗)

=
r2 − r1
λβ

, (21)

where c̃∗ denotes the optimal consumption choice for ã∗. Hence, the ratio for optimal

consumption after and before a jump is constant:

c̃∗

c∗
=

µ
λβ

r2 − r1

¶1/σ
. (22)

Since by assumption (12) the term on the right-hand side is greater than 1, this

equation shows that consumption jumps upwards if a jump in the risky asset price

occurs. This result is not surprising since, if the risky asset price jumps upwards, so

does the household’s wealth.

In the next step, we compute the evolution of V 0 (a∗ (t)), where a∗ (t) denotes

the wealth process associated to the optimal consumption and investment behavior.

Assume that V is twice continuously differentiable. Then, due to budget constraint

(9), CVF from corollary 2.1 yields

dV 0 (a∗ (t)) = {[θ∗ (t) r1 + (1− θ∗ (t)) r2] a∗ (t) + w − c∗ (t)}V 00 (a∗ (t)) dt

+ [V 0 (ã∗ (t−))− V 0 (a∗ (t−))] dq (t) . (23)

On the other hand, differentiating the maximized HJB equation (13) evaluated at
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a∗ (t) yields under application of the envelope theorem

ρV 0(a∗ (t)) = {[θ∗ (t) r1 + (1− θ∗ (t)) r2] a∗ (t) + w − c∗ (t)}V 00(a∗ (t))

+ {θ∗ (t) r1 + [1− θ∗ (t)] r2}V 0 (a∗ (t))

+λ {V 0 (ã∗ (t)) [1 + θ∗ (t)β]− V 0 (a∗ (t))} .

Rearranging gives

{[θ∗ (t) r1 + (1− θ∗ (t)) r2] a∗ (t) + w − c∗ (t)}V 00(a∗ (t))

= {ρ− [θ∗ (t) r1 + (1− θ∗ (t)) r2]}V 0(a∗ (t))

−λ {V 0 (ã∗ (t)) [1 + θ∗ (t)β]− V 0 (a∗ (t))} .

Inserting this into (23) yields

dV 0 (a∗ (t)) =

(
{ρ− [θ∗ (t) r1 + (1− θ∗ (t)) r2]}V 0 (a∗ (t))

−λ {[1 + θ∗ (t)β]V 0 (ã∗ (t))− V 0 (a∗ (t))}

)
dt

+ [V 0 (ã∗ (t−))− V 0 (a∗ (t−))] dq (t) .

By replacing V 0 with u0 according to the first-order condition for optimal consumption,

equation (19), we obtain

du0 (c∗ (t)) =

(
{ρ− [θ∗ (t) r1 + (1− θ∗ (t)) r2]}u0 (c∗ (t))
−λ {[1 + θ∗ (t) β]u0 (c̃∗ (t))− u0 (c∗ (t))}

)
dt

+ [u0 (c̃∗ (t−))− u0 (c∗ (t−))] dq (t) .

Now applying the CVF from corollary 2.1 to f (x) = (u0)−1 (x) leads to the Keynes-

Ramsey rule for general utility functions u,

−u
00 (c∗ (t−))
u0 (c∗ (t−))

dc∗ (t) =

(
θ∗ (t) r1 + [1− θ∗ (t)] r2 − ρ

−λ
n
1− [1 + θ∗ (t)β] u

0(c̃∗(t))
u0(c∗(t))

o ) dt

− [c̃∗ (t−)− c∗ (t−)]
u00 (c∗ (t−))
u0 (c∗ (t−))

dq (t) .

For the CRRA utility function as given as in (10) we get by eliminating u0 (c̃∗t ) ac-
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cording to (21) and c̃∗t according to (22)

dc∗ (t)
c∗ (t−)

=
1

σ

·
r2 − λ

µ
1− r2 − r1

λβ

¶
− ρ

¸
dt+

"µ
λβ

r2 − r1

¶1/σ
− 1
#
dq (t) .

The optimal change in consumption can thus be expressed in terms of well-known pa-

rameters. As long as the price of the risky asset does not jump, optimal consumption

grows constantly by the rate
h
r2 − λ

³
1− r2−r1

λβ

´
− ρ
i
/σ. The higher the risk-free

interest rate, r2, and the lower the guaranteed interest rate of the risky asset, r1, the

discrete growth rate, β, the probability of a price jump, λ, the time preference rate,

ρ, and the risk aversion parameter, σ, the higher becomes the consumption growth

rate. If the risky asset price jumps, consumption jumps as well to its new higher level

c∗ (t) = [(λβ) / (r2 − r1)]
1/σ c∗ (t−). Here the growth rate depends positively on λ, β,

and r1, whereas r2 and σ have negative influence.

3.4 A closed form solution

3.4.1 General approach: Guessing the value function

Obtaining a closed form solution for the optimal controls is not obvious. Looking

for such a solution has a long tradition in finance (see, e.g., Merton (1969, 1971)

or Framstad et al. (2001)) and also in macroeconomics (see, e.g., Wälde (1999a)).

Finding a closed form solution is in general the result of an “educated guess”. That

means, we consider already solved optimization problems that are similar to ours and

try to deduce a solution from them. After having found a candidate for a solution,

it has to be verified. To this end, one can use a so called verification theorem. Such

a theorem tells us that, if the candidate for the optimal solution solves the HJB

equation and if furthermore certain limiting conditions are satisfied, the candidate

for the optimal solution is indeed optimal, see, e.g., theorem 5.2 in Sennewald (2005).

>From similar consumption and investment problems in Merton (1969, 1971) and

elsewhere we can guess that the value function is of the form

J (a) =
K [a+ L]1−σ −M

1− σ
(24)
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with unknown constantsK,L, andM . In the following steps, this rather vague expres-

sion for the candidate of the value function is used to derive the optimal consumption

and investment behavior and explicit expression for K, L and M .

3.4.2 Deriving and verifying optimal consumption and investment

Let us for the moment abandon the control space contraints (17) and (18), introduced

in subsection 3.3. Starting from the candidate for the value function in (24) and

using the verification theorem 5.2 in Sennewald (2005), we show how the optimal

consumption and investment behavior can be both derived and verified at the same

time. The verification consists of two steps:

1.) Does the candidate for the value function solve the HJB equation

ρJ(a) = max
{c≥0,θ∈R}

(
u(c) + [(θr1 + (1− θ) r2) a+ w − c]J

0
(a)

+λ [J (ã)− J (a)]

)
? (25)

And is the maximum in (25) attained by the candidates for the optimal controls, c∗

and θ∗?

2.) Are the limiting conditions

lim
t→∞

E
£
e−ρtJ (a∗ (t))

¤
= 0 (26)

and

lim
t→∞

E
£
e−ρtJ (a (t))

¤ ≥ 0 (27)

satisfied, where a (t) denotes the wealth process associated to an arbitrary admissible

Markov control?

At first, we derive in step 1.) the constants K,L,M and the candidates for the

optimal controls such that the HJB equation (25) holds. Then we show in step 2.)

that these candidates satisfy limiting conditions (26) and (27).

Step 1.) Since the right-hand side of the HJB equation (25) is strictly concave
in c and θ, the HJB equation holds if the following two points are satisfied:

a) Do the candidates for the optimal controls solve the first-order conditions for
the maximum on the right-hand side in (25)?

b) Do the candidates for the optimal controls yield equality in (25)?

18



Point a) makes sure that c∗ and θ∗ maximize the right-hand side in (25). If

furthermore point b) is satisfied, we can conclude that the HJB equation holds.

ad a) The first-order conditions read (cf. also (19) and (20))

u0 (c∗) = J 0 (a) (28)

and

J 0 (a) (r1 − r2) a+ λJ 0 (ã∗)βa = 0. (29)

Rearranging the last equation yields for a 6= 0

(a+ L)−σ (r2 − r1) = λ [(1 + βθ∗) a+ L]−σ β.

Therefore, the optimal consumption must be

c∗ = K−1/σ [a+ L] , (30)

and the optimal share invested in the risky asset

θ∗ =

"µ
λβ

r2 − r1

¶1/σ
− 1
#
a+ L

βa
, a 6= 0. (31)

ad b) Inserting (30) and (31) into the maximized HJB equation (25) gives unique
expressions for K,L, and M , such that finally the candidate for the value function

reads17

J (a) =

1
ψσ

³
a+ w

r2

´1−σ
− 1

ρ

1− σ
, (32)

with the constant

ψ =
1

σ
(ρ+ λ)− 1− σ

σ

µ
r2 +

r2 − r1
β

¶
− λ

µ
λβ

r2 − r1

¶1−σ
σ

. (33)

17See appendix D.
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Thus, according to (30), optimal consumption must obey

c∗ = ψ

·
a+

w

r2

¸
, (34)

whereas, by (31), the optimal share of wealth held in the risky asset can only be

θ∗ =

"µ
λβ

r2 − r1

¶ 1
σ

− 1
#
a+ w

r2

βa
, a 6= 0. (35)

In order to derive economically meaningful solutions, we require ψ to be positive.

That is, the time preference must be enough, namely

ρ > (1− σ)

µ
r2 +

r2 − r1
β

¶
+ σλ

µ
λβ

r2 − r1

¶1−σ
σ

− λ. (36)

Notice that with (34) and (35), we have derived the (only) controls corresponding to

the guessed value function (24) that maximize the HJB equation. Thus, if now the

terminal conditions in step 2.) are satisfied, we know that these controls are optimal.

Step 2.) This step requires some calculation. At first, we check limiting condition
(26). Due to the shape of J as given as in (32), it suffice to show

lim
t→∞

e−ρtE
µ
a∗ (t) +

w

r2

¶1−σ
= 0. (37)

To this end, we derive an explicit expression for (a∗ (t) + w/r2)
1−σ. According to

CVF, the total wealth process a∗ (t) + w/r2 obeys the budget constraint (9) with

starting point a (t0) + w/r2. Inserting the candidates for optimal consumption and

investment from (34) and (35) into the budget constraint yields

d

·
a∗ (t) +

w

r2

¸
= η1

·
a∗ (t) +

w

r2

¸
dt+ η2

·
a∗ (t−) +

w

r2

¸
dq (t) ,

where η1 =
1
σ

h
r2 − λ

³
1− r2−r1

λβ

´
− ρ
i
and η2 =

³
λβ

r2−r1

´ 1
σ − 1. The solution of this
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linear stochastic differential equation reads (see, e.g., Garcia and Griego (1994)):

a∗ (t) +
w

r2
=

µ
a (t0) +

w

r2

¶
expη1(t−t0)+ln(1+η2)q(t) .

Hence,18

E

µ
a∗ (t) +

w

r2

¶1−σ
=

µ
a (t0) +

w

r2

¶1−σ
exp{(1−σ)η1+λ[(1+η2)1−σ−1]}(t−t0) .

Therefore, (37), and thus (26) as well, are satisfied if and only if

ρ > (1− σ) η1 + λ
£
(1 + η2)

1−σ − 1¤ ,
which after some rearranging is equivalent to

ρ > (1− σ)

µ
r2 +

r2 − r1
β

¶
+ σλ

µ
λβ

r2 − r1

¶1−σ
σ

− λ.

But this parameter constellation is already met by (36). Thus, limiting condition (26)

is satisfied. This well-known result, the connection between positive consumption and

limiting condition (26), was also found by Merton (1990) in a revised version of its

paper from 1969 for the case with Brownian motion as noise.

It remains to be shown that limiting inequality (27) holds for any arbitrary ad-

missible Markov control. For the case 0 < σ < 1, we use that the candidate for the

value function, (32), is always greater than − [ρ (1− σ)]−1. Therefore,

lim
t→∞

E
£
e−ρtJ (a (t))

¤ ≥ − lim
t→∞

e−ρt

ρ (1− σ)
= 0

is trivially satisfied.

For σ ≥ 1, finding a lower bound for J (a (t)) is less simple since we can not rule
out that J (a (t)) approaches −∞, which happens if a (t) approaches the boundary of
the state space, −w/r2. Thus, for (27) to be satisfied, we have to show that J (a (t))
tends to −∞ with a rate less than ρ. For this purpose, we derive at first the lowest

18Here we use E expaX+b = expλ(exp
b−1)+a, where X is a Poisson distributed random variable

with parameter λ.
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a (t) the household can achieve. Assume without loss of generality that the household

is in debt. That is, a (t) < 0. Now, introducing again control space constraints (17)

and (18), one can show easily that the infinitesimal change of a (t) is always greater

than − (1− r1) [a (t) + w/r2]. Thus, using a comparison principle as, e.g., corollary

3.5 in Bassan et al. (1993), we can conclude that a (t) ≥ ã (t), where ã (t) is the

solution of

dã (t) = − (1− r1)

·
ã (t) +

w

r2

¸
dt, ã (t0) = a (t0) .

Solving this linear differential equation yields

ã (t) =

µ
1− w

r2

¶
exp−(1−r1)[t−t0] a (t0)− w

r2
.

Hence,

lim
t→∞

E
£
e−ρtJ (a (t))

¤ ≥ lim
t→∞

e−ρtJ (ã (t))

= −
h³
1− w

r2

´
a (t0)

i−(σ−1)
exp−ρt0

(σ − 1)ψσ lim
t→∞

exp−[ρ−(σ−1)(1−r1)][t−t0] .

Thus, for limiting condition (27) to be satisfied, we must again require the time

preference parameter ρ to be high enough, namely ρ > (σ − 1) (1− r1).

Finally, we have verified that the derived candidates for the optimal controls, (34)

and (35), are indeed the optimal Markov controls. For this purpose, we required only

the time preference rate to be high enough, and for the case σ > 1 we introduced

again control space constraints (17) and (18). Therefore, we now have to make sure

that for σ > 1 the optimal controls indeed satisfy these constraints. Inserting the

expression for optimal consumption and investment, (34) and (35), into (17) and (18),

respectively, shows that a sufficient parameter constellation is given if ψ ≤ 1, i.e.,

ρ ≤ σ + (1− σ)

µ
r2 +

r2 − r1
β

¶
+ σλ

µ
λβ

r2 − r1

¶1−σ
σ

− λ

and
λβ

r2 − r1
≤ (1 + β)σ .
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The latter inequality means that the expected return from a jump in the risky asset

price, λβ, shall not exceed the "opportunity costs" for investment in the risky asset,

r2 − r1, too much. Then, the household is not willing to borrow more than its total

wealth a+ w/r2 to finance risky investment.

Finally, we can now use theorem 5.5 in Sennewald (2005) to deduce that the

optimal Markov controls (34) and (35) are even optimal within the class of general

controls. The assumptions required in this theorem – "≥" in the HJB equation (25)
is satisfied, and limiting inequality (27) holds for all general controls – are implicitly

shown by steps 1.) and 2.) above.

3.4.3 Economic insights

Equation (34) shows that the optimal consumption is a constant fraction of total

wealth, a + w/r2, consisting of physical wealth plus the present value of all current

and future labor income. If wealth is small then consumption exceeds wealth and the

household runs into debt. Future wages are used to repay this debt. This behavior

embodies the consumption smoothing motive of a risk avers household.

Equation (35) shows that the optimal share of wealth invested into the risky asset

is a constant times total wealth divided by physically wealth. The lower the physical

wealth the higher this share. If a is very low, then the optimal behaving household

borrows to finance risky investment, i.e., θ∗ > 1.19

Since the absolute investment in the risky asset, θ∗a, is a constant fraction of total

wealth, a + w/r2, the optimal share θ
∗ goes to infinity as a tends toward 0, namely

according to

lim
a→0

θ∗a =

"µ
λβ

r2 − r1

¶ 1
σ

− 1
#
w

r2
.

If a is negative, i.e., the household is in debt, then θ∗ is negative as well. Hence,

θ∗a is positive, which implies that the optimal behaving household, once it is in debt,

borrows to finance more risky investment.20

At first view, it might appear paradox with respect to the household’s risk aver-

sion that with lower wealth the share held in the risky asset increases and that the

19Borrowing in this context means short-selling the risk-free asset.
20The risk-free investment amounts to (1− θ∗) a, which is for negative θ∗ lower than the debts.
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household even borrows to buy more from the risky asset. But read equation (35)

like this: The absolute investment into the risky asset, θ∗a, is a constant fraction of

total wealth, a+w/r2. Hence, the lower total wealth the lower the risky investment.

This is consistent with the results found in, e.g., Merton (1969, 1971). But since here

θ∗ is expressed as a fraction of physical and not of total wealth, it must be decreasing

in a if the income w remains constant.

4 Conclusion

This paper has given examples of how the CVF and the HJB equation can be used to

analyze optimal behavior in an optimal control setup of Poisson uncertainty. When

a closed form solution for optimal behavior is available, further analysis is straight-

forward. When only a Keynes-Ramsey rule can be derived, further analysis can use,

e.g., phase diagrams to understand properties of optimal behavior.

The presented derivations and results should apply in different setups with Poisson

processes as well. The principles of deriving a Keynes-Ramsey rule or closed form

solutions remain the same.

A Heuristic derivation of HJB equation (5)

Assuming that an optimal consumption process exists, we derive from

0 = max
c(s)≥0

Et

Z ∞

t

e−ρ(s−t)u (c (s)) ds− V (t, a (t))

for some small h > 0

0 = max
c(s)≥0

(
Et

R t+h
t

e−ρ(s−t)u (c (s)) ds

+Et

h
e−ρhEt+h

R∞
t+h

e−ρ(s−(t+h))u (c (s)) ds
i )− V (a (t)),

where Et+h denotes the expectation operator conditional on wealth in t + h. This

conditional expectation is nothing else than the expected lifetime utility for a house-

hold starting with wealth a (t+ h) at time t + h. Therefore, for any control c (s),
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s ≥ t+ h,

Et+h

Z ∞

t+h

e−ρ(s−(t+h))u (c (s)) ≤ V (t+ h, a (t+ h)) ,

where equality holds for the optimal consumption process c∗ (s). Hence,

0 = max
c(s)≥0,t≤s<t+h

(
E
R t+h
t

e−ρ(s−t)u (c (s)) ds

+E
£
e−ρhV (t+ h, a (t+ h))

¤ )− V (a (t)).

That means, assumed optimal behavior from time t+h on, the optimal consumption

has only to be determined until t + h and not on the whole infinite time horizon.

Dividing by h and applying the limit h& 0, the last equation becomes

0 = max
c(t)

(
limh&0E 1

h

R t+h
t

e−ρ(s−t)u (c (s)) ds

+ limh&0E 1
h

£
e−ρhV (a (t+ h))− V (a (t))

¤ ) . (38)

The second expression on the right-hand side is the derivation of e−ρhEV (a (t+ h))

with respect to h for h = 0. Hence, using the product rule this derivation becomes

−ρV (t, a (t)) + d

dh
EV (t+ h, a (t+ h)) .

Since d
dh
EV (t+ h, a (t+ h)) in h = 0 is equal as d

dt
EV (t, a (t)) and today’s wealth is

independent on today’s consumption choice, we may rewrite (38) as

ρV (t, a (t)) = max
c(t)

½
lim
h&0

E
1

h

Z t+h

t

e−ρ(s−t)u (c (s)) ds+
d

dt
EV (t, a (t))

¾
.

Under certain conditions the theorem of bounded convergence allows to interchange

limit and expectation (and thus differentiation and expectation). Then the latter

equation becomes

ρV (t, a (t)) = max
c(t)

½
u (c (t)) +

EdV (t, a (t))

dt

¾
,

which is the general HJB equation (5).
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B Deriving budget constraint (9): The self-financing

approach

An other approach to derive the budget constraint is the self-financing concept, taken

from finance, where the change of a portfolio value is only due to stock price changes.

In our example it means that, if dividend payments are not taken into account, the

only source for a change in the household’s wealth are price changes of the stocks held

by the household, labor income and consumption expenditure. We can thus describe

the evolvement of wealth by

da (t) = n1 (t−) dp1 (t) + n2 (t−) dp2 (t) + (w − c (t)) dt,

where n1 (t) and n2 (t) denote the number of stocks hold from the risky and the safe

asset, respectively. Then, inserting the differentials for the asset prices, (7) and (8),

yields

da (t) = [r1n1 (t) v (t) + r2n2 (t) v (t) + w − c (t)] dt+ βn1 (t−) v1 (t−) dq (t)

= {[θ (t) r1 + (1− θ (t)) r2] a (t) + w − c (t)} dt+ βθ (t−) a (t−) dq (t) ,

which gives already budget constraint (9).

C A special case: u (c) = ln c

If we let the risk aversion parameter in (10), σ, tend toward 1, utility becomes

u (c) = ln c.

For this special case, the Keynes-Ramsey rule reads

dc∗ (t)
c∗ (t−)

=

·
r2 +

r2 − r1
β

− λ− ρ

¸
dt+

·
λβ

r2 − r1
− 1
¸
dq (t) .
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The optimal consumption is given by

c∗ = ρ

·
a+

w

r2

¸
,

and the optimal investment behavior is

θ∗ =
·

βλ

r2 − r1
− 1
¸
a+ w

r2

βa
.

The value function reads

V (a) =
ln
³
a+ w

r2

´
ρ

+
ln ρ

ρ
+

λ
³
lnλ+ ln β

r2−r1

´
−
³
ρ+ λ− r2 − r2−r1

β

´
ρ2

.

D Verification theorem: Deriving (32), (34) and

(35)

Inserting the candidates for the value function and the optimal consumption and in-

vestment behavior, (24), (30), and (31), respectively, into the maximized HJB equa-

tion in (25) yields

ρ
K [a+ L]1−σ −M

1− σ
=

K−(1−σ)/σ [a+ L]1−σ − 1
1− σ

+


·µ³

λβ
r2−r1

´1/σ
− 1
¶

a+L
βa
(r1 − r2) + r2

¸
a

+w −K−1/σ [a+ L]

K [a+ L]−σ

+λ

 K

½·
1+

µ³
λβ

r2−r1

´1/σ−1¶ a+L
a

¸
a+L

¾1−σ
−M

1−σ
−K[a+L]1−σ−M

1−σ
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Rearranging gives

ρ
K [a+ L]1−σ

1− σ
=

K−(1−σ)/σ [a+ L]1−σ − 1
1− σ

− 1− ρM

1− σ

+


µ³

λβ
r2−r1

´1/σ
− 1
¶

r1−r2
β

+r2
a+w/r2
a+L

−K−1/σ

K [a+ L]1−σ

+λ

K
³

λβ
r2−r1

´(1−σ)/σ
(a+ L)1−σ

1− σ
− K [a+ L]1−σ

1− σ

 .
Since this equation must hold for all a > −w/r2, we conclude, M = 1/ρ. Hence,

dividing the whole equation by K [a+ L]1−σ and multiplying with 1− σ leads to

ρ = K−1/σ + (1− σ)

"Ãµ
λβ

r2 − r1

¶1/σ
− 1
!
r1 − r2

β
+ r2

a+ w/r2
a+ L

−K−1/σ
#

+λ

"µ
λβ

r2 − r1

¶(1−σ)/σ
− 1
#
.

Then, again from the fact that this must hold for all a > −w/r2, we obtain L = w/r2.

Further rearranging yields

ρ = σK−1/σ + (1− σ)

"
−λ

µ
λβ

r2 − r1

¶(1−σ)/σ
+

r2 − r1
β

+ r2

#

+λ

"µ
λβ

r2 − r1

¶(1−σ)/σ
− 1
#
,

and, thus,

K−1/σ =
1

σ

·
ρ+ λ− (1− σ)

µ
r2 − r1

β
+ r2

¶¸
− λ

µ
λβ

r2 − r1

¶(1−σ)/σ
.

The expression on the right-hand side is equal as ψ in (33). Hence, K−1/σ = ψ,

and the explicit expressions for the candidates of the value function and optimal

consumption and investment in (32), (34) and (35) follow.
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