2,599 research outputs found

    On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

    Full text link
    We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer IRS and Infrared Space Observatory SWS spectra of 217 oxygen-rich asymptotic giant branch stars and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally-rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 microns. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ~10^-9 solar masses/year. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-micron feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-micron band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.Comment: Accepted for publication in MNRAS, 24 pages, 16 figure

    The mineralogy, geometry and mass-loss history of IRAS 16342-3814

    Get PDF
    We present the 2-200 um Infrared Space Observatory (ISO) spectrum and 3.8-20 um ISAAC and TIMMI2 images of the extreme OH/IR star IRAS 16342-3814. Amorphous silicate absorption features are seen, together with crystalline silicate absorption features up to almost 45 um. No other OH/IR star is known to have crystalline silicate features in absorption up to these wavelengths. This suggests that IRAS 16342-3814 must have, or recently had, an extremely high mass-loss rate. Preliminary radiative transfer calculations suggest that the mass-loss rate may be as large as 10^{-3} Msun/yr. The 3.8 um ISAAC image shows a bipolar reflection nebula with a dark equatorial waist or torus, similar to that seen in optical Hubble Space Telescope (HST) images. The position angle of the nebula decreases significantly with increasing wavelength, suggesting that the dominant source of emission changes from scattering to thermal emission. Still, even up to 20 um the nebula is oriented approximately along the major axis of the nebula seen in the HST and ISAAC images, suggesting that the torus must be very cold, in agreement with the very red ISO spectrum. The 20 um image shows a roughly spherically symmetric extended halo, approximately 6'' in diameter, which is probably due to a previous phase of mass-loss on the AGB, suggesting a transition from a (more) spherically symmetric to a (more) axial symmetric form of mass-loss at the end of the AGB. We estimate the maximum dust particle sizes in the torus and in the reflection nebula to be 1.3 and 0.09 um respectively. The size of the particles in the torus is large compared to typical ISM values, but in agreement with high mass-loss rate objects like AFGL 4106 and HD161796. We discuss the possible reason for the difference in particle size between the torus and the reflection nebula.Comment: Accepted for publication by A&

    Thermodynamic properties and thermal correlation lengths of a Hubbard model with bond-charge interaction

    Full text link
    We investigate the thermodynamics of a one-dimensional Hubbard model with bond-charge interaction X using the transfer matrix renormalization group method (TMRG). Numerical results for various quantities like spin and charge susceptibilities, particle densities, specific heat and thermal correlation lengths are presented and discussed. We compare our data also to results for the exactly solvable case X/t=1 as well as to bosonisation results for weak coupling X/t << 1, which shows excellent agreement. We confirm the existence of a Tomonaga-Luttinger and a Luther-Emery liquid phase, in agreement with previous studies at zero temperature. Thermal singlet-pair correlation lengths are shown to dominate density and spin correlations for finite temperatures in certain parameter regimes.Comment: 13 pages, revte

    Is the structure of 42Si understood?

    Get PDF
    A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier comparisons of excited-state energies -- is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying \nuc{42}{Si}(21+2^+_1) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from \nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the individual \nuc{42}{Si} final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0+0^+ states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the (02+0^+_2) level.Comment: accepted in Physical Review Letter

    pp-sdsd shell gap reduction in neutron-rich systems and cross-shell excitations in 20^{20}O

    Full text link
    Excited states in 20^{20}O were populated in the reaction 10^{10}Be(14^{14}C,α\alpha) at Florida State University. Charged particles were detected with a particle telescope consisting of 4 annularly segmented Si surface barrier detectors and γ\gamma radiation was detected with the FSU γ\gamma detector array. Five new states were observed below 6 MeV from the α\alpha-γ\gamma and α\alpha-γ\gamma-γ\gamma coincidence data. Shell model calculations suggest that most of the newly observed states are core-excited 1p-1h excitations across the N=Z=8N = Z = 8 shell gap. Comparisons between experimental data and calculations for the neutron-rich O and F isotopes imply a steady reduction of the pp-sdsd shell gap as neutrons are added

    Ageing phenomena without detailed balance: the contact process

    Full text link
    The long-time dynamics of the 1D contact process suddenly brought out of an uncorrelated initial state is studied through a light-cone transfer-matrix renormalisation group approach. At criticality, the system undergoes ageing which is characterised through the dynamical scaling of the two-times autocorrelation and autoresponse functions. The observed non-equality of the ageing exponents a and b excludes the possibility of a finite fluctuation-dissipation ratio in the ageing regime. The scaling form of the critical autoresponse function is in agreement with the prediction of local scale-invariance.Comment: 20 pages, 15 figures, Latex2e with IOP macro

    Evolution of the E(1/21+)E(3/21+)E(1/2^+_1)-E(3/2^+_1) energy spacing in odd-mass K, Cl and P isotopes for N=2028N=20-28

    Get PDF
    The energy of the first excited state in the neutron-rich N=28 nucleus 45Cl has been established via in-beam gamma-ray spectroscopy following proton removal. This energy value completes the systematics of the E(1/2^+_1)-E(3/2^+_1) level spacing in odd-mass K, Cl and P isotopes for N=20-28. The results are discussed in the framework of shell-model calculations in the sd-fp model space. The contribution of the central, spin-orbit and tensor components is discussed from a calculation based on a proton single-hole spectrum from G-matrix and pi + rho meson exchange potentials. A composite model for the proton 0d_{3/2}-1s_{1/2} single-particle energy shift is presented.Comment: Phys. Rev. C, in pres

    Changes in use of herbs and dietary supplements (HDS) among clinicians enrolled in an online curriculum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about clinicians' use of herbs and dietary supplements (HDS), how their personal HDS use changes with time and training, and how changes in their personal use affect their confidence or communication with patients about HDS.</p> <p>Methods</p> <p>We conducted a prospective cohort study of clinicians before and after an on-line curriculum about HDS in winter-spring, 2005.</p> <p>Results</p> <p>Of the 569 clinicians who completed surveys both at baseline and after the course, 25% were male and the average age was 42 years old; 88% used HDS before and after the course. The average number of supplements used fell slightly from 6.2 at baseline to 5.8 after the course (P < 0.01). The most commonly used supplements at baseline were: multivitamins (65%), calcium (42%), B vitamins (34%), vitamin C (34%), green tea (27%), fish oil (27%) and vitamin E (25%). Use of fish oil increased to 30% after the course (P = 0.01). Use of supplements traditionally used to treat colds decreased: vitamin C (34% to 27%), zinc (13% to 10%), and echinacea (7% to 5%, P < 0.05 for all three). Changes in personal HDS use were not associated with significant changes in confidence or communication with patients.</p> <p>Conclusion</p> <p>Many clinicians use HDS personally; use changes seasonally and to a small extent with professional education. Professional use of HDS is dynamic and seasonal. Additional research is needed to understand the impact of personal use on professional attitudes and behavior in populations with lower baseline uses of HDS.</p
    corecore