We present the 2-200 um Infrared Space Observatory (ISO) spectrum and 3.8-20
um ISAAC and TIMMI2 images of the extreme OH/IR star IRAS 16342-3814. Amorphous
silicate absorption features are seen, together with crystalline silicate
absorption features up to almost 45 um. No other OH/IR star is known to have
crystalline silicate features in absorption up to these wavelengths. This
suggests that IRAS 16342-3814 must have, or recently had, an extremely high
mass-loss rate. Preliminary radiative transfer calculations suggest that the
mass-loss rate may be as large as 10^{-3} Msun/yr. The 3.8 um ISAAC image shows
a bipolar reflection nebula with a dark equatorial waist or torus, similar to
that seen in optical Hubble Space Telescope (HST) images. The position angle of
the nebula decreases significantly with increasing wavelength, suggesting that
the dominant source of emission changes from scattering to thermal emission.
Still, even up to 20 um the nebula is oriented approximately along the major
axis of the nebula seen in the HST and ISAAC images, suggesting that the torus
must be very cold, in agreement with the very red ISO spectrum. The 20 um image
shows a roughly spherically symmetric extended halo, approximately 6'' in
diameter, which is probably due to a previous phase of mass-loss on the AGB,
suggesting a transition from a (more) spherically symmetric to a (more) axial
symmetric form of mass-loss at the end of the AGB. We estimate the maximum dust
particle sizes in the torus and in the reflection nebula to be 1.3 and 0.09 um
respectively. The size of the particles in the torus is large compared to
typical ISM values, but in agreement with high mass-loss rate objects like AFGL
4106 and HD161796. We discuss the possible reason for the difference in
particle size between the torus and the reflection nebula.Comment: Accepted for publication by A&