93 research outputs found

    Structure and properties of fluorinated and non‐fluorinated Ba‐coordination polymers – the position of fluorine makes the difference

    Get PDF
    As the most electronegative element, fluorine has a strong influence on material properties such as absorption behaviour or chemical and thermal stability. Fluorine can be easily integrated into coordination polymers (CPs) via a fluorinated acetate, here trifluoroacetate in Ba(CF3COO)2, or directly via a metal fluorine bond (BaF(CH3COO)). In the present study both possibilities of fluorine integration were tested and their effect on structure and properties of barium coordination polymers was investigated in comparison with the non-fluorinated barium acetate (Ba(CH3COO)2). In addition to the study of their thermal behaviour and their decomposition temperature, the CPs structures were tested for their application as possible anode materials in lithium ion batteries and for their sorption of water and ammonia. The properties of the CPs can be traced back to the individual structural motifs and could thus trigger new design ideas for CPs in LIBs and/or catalysis.HU BerlinBAMPeer Reviewe

    Improved Durability of Wood Treated with Nano Metal Fluorides against Brown-Rot and White-Rot Fungi

    Get PDF
    Low-water soluble metal fluorides such as magnesium fluoride (MgF2) and calcium fluoride (CaF2) were evaluated for decay protection of wood. Initially, the biocidal efficacy of nano metal fluorides (NMFs) against wood destroying fungi was assessed with an in-vitro agar test. The results from the test showed that agar medium containing MgF2 and CaF2 was more efficient in preventing fungal decay than stand-alone MgF2 or CaF2. These metal fluorides, in their nanoscopic form synthesized using fluorolytic sol-gel synthesis, were introduced into the sapwood of Scots pine and beech wood and then subjected to accelerated ageing by leaching (EN 84). MAS 19F NMR and X-ray micro CT images showed that metal fluorides were present in treated wood, unleached and leached. Decay resistance of Scots pine and beech wood treated with NMFs was tested against wood destroying fungi Rhodonia placenta and Trametes versicolor in accordance with EN 113. Results revealed that mass losses were reduced to below 3% in wood treated with the combination of MgF2 and CaF2. It is concluded that NMFs provide full protection to wood even after it has been leached and can be used as wood preservatives in outdoor environments.Peer Reviewe

    Chemical in‐depth analysis of (Ca/Sr)F2 core–shell like nanoparticles by X‐ray photoelectron spectroscopy with tunable excitation energy

    Get PDF
    The fluorolytic sol–gel synthesis is applied with the intention to obtain two different types of core–shell nanoparticles, namely, SrF2–CaF2 and CaF2–SrF2. In two separate fluorination steps for core and shell formation, the corresponding metal lactates are reacted with anhydrous HF in ethylene glycol. Scanning transmission electron microscopy (STEM) and dynamic light scattering (DLS) confirm the formation of particles with mean dimensions between 6.4 and 11.5 nm. The overall chemical composition of the particles during the different reaction steps is monitored by quantitative Al Kα excitation X-ray photoelectron spectroscopy (XPS). Here, the formation of stoichiometric metal fluorides (MF2) is confirmed, both for the core and the final core–shell particles. Furthermore, an in-depth analysis by synchrotron radiation XPS (SR-XPS) with tunable excitation energy is performed to confirm the core–shell character of the nanoparticles. Additionally, Ca2p/Sr3d XPS intensity ratio in-depth profiles are simulated using the software Simulation of Electron Spectra for Surface Analysis (SESSA). In principle, core–shell like particle morphologies are formed but without a sharp interface between calcium and strontium containing phases. Surprisingly, the in-depth chemical distribution of the two types of nanoparticles is equal within the error of the experiment. Both comprise a SrF2-rich core domain and CaF2-rich shell domain with an intermixing zone between them. Consequently, the internal morphology of the final nanoparticles seems to be independent from the synthesis chronology.European Metrology Programme for Innovation and Research (EMPIR) http://dx.doi.org/10.13039/100014132Peer Reviewe

    Local Structure of Europium‐Doped Luminescent Strontium Fluoride Nanoparticles: Comparative X‐ray Absorption Spectroscopy and Diffraction Study

    Get PDF
    Rare‐earth based luminescent materials are key functional components for the rational design of light‐conversion smart devices. Stable Eu3+‐doped strontium fluoride (SrF2) nanoparticles were prepared at room temperature in ethylene glycol. Their luminescence depends on the Eu content and changes after heat treatment. The crystallinity of heat‐treated material increases in comparison with as‐synthesized samples. Particles were investigated in solution using X‐ray diffraction, small‐angle X‐ray scattering, and X‐ray spectroscopy. After heat treatment, the size of the disordered nanoparticles increases together with a change of their local structure. Interstitial fluoride ions can be localized near Eu3+ ions. Therefore, non‐radiative relaxation from other mechanisms is decreased. Knowledge about the cation distribution is key information for understanding the luminescence properties of any material.BAM funding program “Ideas” (Menschen Ideen): New insights on the thermal behavior of luminescent nanoparticles from Sol-Gel synthesis by in situ characterization – towards efficient upconversionPeer Reviewe

    Synthesis of ternary transition metal fluorides Li 3MF 6via a sol-gel route as candidates for cathode materials in lithium-ion batteries

    Get PDF
    A sol-gel route for ternary lithium fluorides of transition metals (M) is presented allowing the synthesis of Li 3MF 6-type and Li 2MF 5-type compounds. It is based on a fluorolytic process using transition metal acetylacetonates as precursors. The domain size of the obtained powders can be controlled by modifying the conditions of synthesis. 6Li and 7Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is used to study local environments of the Li ions in orthorhombic and monoclinic Li 3VF 6 as well as Li 2MnF 5. The number of magnetically inequivalent Li sites found by MAS NMR is in agreement with the respective crystal structure of the compounds studied. Quantum chemical calculations show that all materials have high de-lithiation energies making them suitable candidates to be used as high-voltage battery cathode materials. © 2012 The Royal Society of Chemistry

    Novel sol-gel prepared zinc fluoride: synthesis, characterisation and acid-base sites analysis

    Get PDF
    The fluorolytic sol-gel route sets a milestone in the development of synthesis methods for nanoscopic fluoride materials. They exhibit fundamentally distinct properties in comparison to classically prepared metal fluorides. To broaden this area, we report in this paper the first fluorolytic sol-gel synthesis of ZnF₂. The obtained sol was studied with dynamic light scattering (DLS). The dried ZnF₂ xerogel was investigated with elemental analysis, thermal analysis, powder X-ray diffraction (XRD), solid-state MAS NMR, and N₂ adsorption-desorption measurements. The characterisations revealed a remarkably high surface area of the sol-gel prepared ZnF₂. To determine key parameters deciding its prospects in future catalytic applications, we studied the surface acidity-basicity by using in situ FTIR with different probe molecules. Compared to the previously established MgF₂, weaker Lewis acid sites are predominant on the surface of ZnF2 with some base sites, indicating its potential as a heterogeneous catalyst component. In short, we believe that the successful synthesis and detailed characterisation of nanoscopic ZnF₂ allow follow-up work exploring its applications, and will lead to studies of more metal fluorides with similar methods

    A Combined Mg-25 Solid-State NMR and Ab Initio DFT Approach to Probe the Local Structural Differences in Magnesium Acetate Phases Mg(CH3COO)(2)center dot nH(2)O (n=0,1,4)

    Get PDF
    Multinuclear (H-1, C-13, Mg-25) solid-state NMR data is reported for a series of magnesium acetate phases Mg(CH3COO)(2)nH(2)O (n=0 (two polymorphs), 1, 4). The central focus here is Mg-25 as this set of compounds provides an expanded range of local magnesium coordinations compared to what has previously been reported in the literature using NMR. These four compounds provide 10 distinct magnesium sites with varying NMR interaction parameters. One of the anhydrous crystal structures () has an MgO7 site which is reported, to the best of our knowledge, for the first time. For those phases with a single crystal structure, a combination of magic angle spinning (MAS) NMR at high magnetic field (20T) and first principles density functional theory (DFT) calculations demonstrates the value of including Mg-25 in NMR crystallography approaches. For the second anhydrate phase (), where no single crystal structure exists, the multinuclear NMR data clearly show the multiplicity of sites for the different elements, with Mg-25 satellite transition (ST) MAS NMR revealing four inequivalent magnesium environments, which is new information constraining future refinement of the structure. This study highlights the sensitivity of Mg-25 NMR to the local environment, an observation important for several sub-disciplines of chemistry where the structural chemistry of magnesium is likely to be crucial

    The non-aqueous fluorolytic sol–gel synthesis of nanoscaled metal fluorides

    Get PDF
    This review article focuses on the mechanism of the non-aqueous fluorolytic sol gel-synthesis of nanoscopic metal fluorides and hydroxide fluorides. Based on MAS-NMR, XRD, WAXS and SAXS investigations in combination with computational calculations, it is shown that a stepwise replacement of alkoxide by F-ions takes place resulting in the formation of a large variety of metal alkoxide fluoride clusters, some of them being isolated and structurally characterised. It is shown that these nanoscopic metal fluorides obtained via this new synthesis approach exhibit distinctly different properties compared with their classically prepared homologues. Thus, extremely strong solid Lewis acids are available which give access to new catalytic reactions with sometimes unexpectedly high conversion degrees and selectivity. Even more interestingly, metal hydroxide fluorides can be obtained via this synthesis route that are not accessible via any other approach for which the hydroxide to fluoride ratios can be adjusted over a wide range. Optically fully transparent sols obtained in this way can be used for the first time to manufacture antireflective coatings, corundum ceramics with drastically improved properties as well as novel metal fluoride based organic–inorganic composites. The properties of these new fluoride based materials are presented and discussed in context with the above mentioned new fields of application.Peer Reviewe
    • 

    corecore