756 research outputs found

    Readout Concepts for DEPFET Pixel Arrays

    Get PDF
    Field effect transistors embedded into a depleted silicon bulk (DEPFETs) can be used as the first amplifying element for the detection of small signal charges deposited in the bulk by ionizing particles, X-ray photons or visible light. Very good noise performance at room temperature due to the low capacitance of the collecting electrode has been demonstrated. Regular two dimensional arrangements of DEPFETs can be read out by turning on individual rows and reading currents or voltages in the columns. Such arrangements allow the fast, low power readout of larger arrays with the possibility of random access to selected pixels. In this paper, different readout concepts are discussed as they are required for arrays with incomplete or complete clear and for readout at the source or the drain. Examples of VLSI chips for the steering of the gate and clear rows and for reading out the columns are presented.Comment: 8 pages, 9 figures, submitted to Nucl. Instr. and Methods as proceedings of the 9th European Symposium on Semiconductor Detectors, Elmau, June 23-27, 200

    Kinetic and Spectroscopic Characterisation of Highly Reactive Methanesulfonates. Leaving Group Effects for Solvolyses and Comments on Geminal Electronic Effects Influencing SN_N1 Reactivity

    Get PDF
    Highly reactive methanesulfonates (mesylates, ROMs) have been prepared from 1-phenylethanol. cyclohex-2-en-1-ol, diphenylmethanol and p-methoxybenzyl alcohol by treatment with methanesulfonyl chloride and triethylamine in dichloro- or trichloro-methane at - 20 to 0 °C. The mesylates. characterised in solution by 1^1H and 13^{13}C NMR at -20 °C, were obtained in satisfactory purity (ca. 95%) in cold solutions but they decomposed by reaction with chloride, triethylamine or the parent alcohol. Rate constants for solvolyses in aqueous acetone and aqueous ethanol have been determined by a fast response conductimetric method. Product selectivities for solvolyses of pmethoxybenzyl mesylate in aqueous ethanol and methanol at 0 °C have been determined by HPLC. From additional new or Iiterature kinetic data for solvolyses of corresponding bromides. chlorides and p-nitrobenzoates (OPNB). Br/CI. OMs/Br and OMs/OPNB rate ratios were calculated; the results are consistent with electronic effects stabilising the carbocationic transition states and increasing OMs/Br rate ratios for these SN 1 solvolyses; none of the evidence supports a geminal electronic effect on Br/CI rate ratios (e.g. caused by stabilisation of the initial state in pmethoxybenzyl chloride). Steric effects on ester /halide rate ratios for solvolyses of tertiary substrates are confirmed. Relative rates over a 1016^{16} range for ester and halide leaving groups are evaluated for solvolyses of 1-phenylethyl substrates in 80% ethanol-water. updating previous work by Noyce et al. (1972)

    Comment on ``the Klein-Gordon Oscillator''

    Get PDF
    The different ways of description of the S=0S=0 particle with oscillator-like interaction are considered. The results are in conformity with the previous paper of S. Bruce and P. Minning.Comment: LaTeX file, 5p

    On the uniqueness of paths for spin-0 and spin-1 quantum mechanics

    Full text link
    The uniqueness of the Bohmian particle interpretation of the Kemmer equation, which describes massive spin-0 and spin-1 particles, is discussed. Recently the same problem for spin-1/2 was dealt with by Holland. It appears that the uniqueness of boson paths can be enforced under well determined conditions. This in turn fixes the nonrelativistic particle equations of the nonrelativistic Schrodinger equation, which appear to correspond with the original definitions given by de Broglie and Bohm only in the spin-0 case. Similar to the spin-1/2 case, there appears an additional spin-dependent term in the guidance equation in the spin-1 case. We also discuss the ambiguity associated with the introduction of an electromagnetic coupling in the Kemmer theory. We argue that when the minimal coupling is correctly introduced, then the current constructed from the energy-momentum tensor is no longer conserved. Hence this current can not serve as a particle probability four-vector.Comment: 19 pages, no figures, LaTex, shortened version for Phys. Lett.

    Exact Solution of Photon Equation in Stationary G\"{o}del-type and G\"{o}del Space-Times

    Get PDF
    In this work the photon equation (massless Duffin-Kemmer-Petiau equation) is written expilicitly for general type of stationary G\"{o}del space-times and is solved exactly for G\"{o}del-type and G\"{o}del space-times. Harmonic oscillator behaviour of the solutions is discussed and energy spectrum of photon is obtained.Comment: 9 pages,RevTeX, no figure, revised for publicatio

    Status of a DEPFET pixel system for the ILC vertex detector

    Get PDF
    We have developed a prototype system for the ILC vertex detector based on DEPFET pixels. The system operates a 128x64 matrix (with ~35x25 square micron large pixels) and uses two dedicated microchips, the SWITCHER II chip for matrix steering and the CURO II chip for readout. The system development has been driven by the final ILC requirements which above all demand a detector thinned to 50 micron and a row wise read out with line rates of 20MHz and more. The targeted noise performance for the DEPFET technology is in the range of ENC=100 e-. The functionality of the system has been demonstrated using different radioactive sources in an energy range from 6 to 40keV. In recent test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120 has been achieved with present sensors being 450 micron thick. For improved DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40 is expected.Comment: Invited poster at the International Symposium on the Development of Detectors for Particle, AstroParticle and Synchrotron Radiation Experiments, Stanford CA (SNIC06) 6 pages, 12 eps figure

    Test Results on the Silicon Pixel Detector for the TTF-FEL Beam Trajectory Monitor

    Full text link
    Test measurements on the silicon pixel detector for the beam trajectory monitor at the free electron laser of the TESLA test facility are presented. To determine the electronic noise of detector and read-out and to calibrate the signal amplitude of different pixels the 6 keV photons of the manganese K line are used. Two different methods determine the spatial accuracy of the detector: In one setup a laser beam is focused to a straight line and moved across the pixel structure. In the other the detector is scanned using a low-intensity electron beam of an electron microscope. Both methods show that the symmetry axis of the detector defines a straight line within 0.4 microns. The sensitivity of the detector to low energy X-rays is measured using a vacuum ultraviolet beam at the synchrotron light source HASYLAB. Additionally, the electron microscope is used to study the radiation hardness of the detector.Comment: 14 pages (Latex), 13 figures (Postscript), submitted to Nuclear Instruments and Methods

    FoxO3 Modulates Circadian Rhythms in Neural Stem Cells

    Get PDF
    Both FoxO transcription factors and the circadian clock act on the interface of metabolism and cell cycle regulation and are important regulators of cellular stress and stem cell homeostasis. Importantly, FoxO3 preserves the adult neural stem cell population by regulating cell cycle and cellular metabolism and has been shown to regulate circadian rhythms in the liver. However, whether FoxO3 is a regulator of circadian rhythms in neural stem cells remains unknown. Here, we show that loss of FoxO3 disrupts circadian rhythmicity in cultures of neural stem cells, an effect that is mediated via regulation of Clock transcriptional levels. Using Rev-Erbα-VNP as a reporter, we then demonstrate that loss of FoxO3 does not disrupt circadian rhythmicity at the single cell level. A meta-analysis of published data revealed dynamic co-occupancy of multiple circadian clock components within FoxO3 regulatory regions, indicating that FoxO3 is a Clock-controlled gene. Finally, we examined proliferation in the hippocampus of FoxO3-deficient mice and found that loss of FoxO3 delayed the circadian phase of hippocampal proliferation, indicating that FoxO3 regulates correct timing of NSC proliferation. Taken together, our data suggest that FoxO3 is an integral part of circadian regulation of neural stem cell homeostasis

    On the quantum analogue of Galileo's leaning tower experiment

    Full text link
    The quantum analogue of Galileo's leaning tower experiment is revisited using wave packets evolving under the gravitational potential. We first calculate the position detection probabilities for particles projected upwards against gravity around the classical turning point and also around the point of initial projection, which exhibit mass dependence at both these points. We then compute the mean arrival time of freely falling particles using the quantum probability current, which also turns out to be mass dependent. The mass dependence of both the position detection probabilities and the mean arrival time vanish in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter.Comment: Latex, 12 pages, 1 figure, uses IOP style, clarifications and references adde

    Relativistic Aharonov-Casher Phase in Spin One

    Get PDF
    The Aharonov-Casher (AC) phase is calculated in relativistic wave equations of spin one. The AC phase has previously been calculated from the Dirac-Pauli equation using a gauge-like technique \cite{MK1,MK2}. In the spin-one case, we use Kemmer theory (a Dirac-like particle theory) to calculate the phase in a similar manner. However the vector formalism, the Proca theory, is more widely known and used. In the presence of an electromagnetic field, the two theories are `equivalent' and may be transformed into one another. We adapt these transformations to show that the Kemmer theory results apply to the Proca theory. Then we calculate the Aharonov-Casher phase for spin-one particles directly in the Proca formalism.Comment: 12 page
    • …
    corecore