119 research outputs found

    Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction

    Get PDF
    AbstractAlthough the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) regulated expression of multiple antioxidant and cytoprotective genes through the electrophile responsive element (EpRE) is well established, interaction of Nrf2/EpRE with Nrf1, a closely-related transcription factor, is less well understood. Due to either proteolysis or alternative translation, Nrf1 has been found as proteins of varying size, p120, p95, and p65, which have been described as either activators of EpRE or competitive inhibitors of Nrf2. We investigated the effect of Nrf1 on EpRE-regulated gene expression using the catalytic and modifier subunits of glutamate cysteine ligase (GCLC and GCLM) as models and explored the potential role of Nrf1 in altering their expression in aging and upon chronic exposure to airborne nano-sized particulate matter (nPM). Nrf1 knockout resulted in the increased expression of GCLC and GCLM in human bronchial epithelial (HBE1) cells. Overexpression Nrf2 in combination with either p120 or p65 diminished or failed to further increase the GCLC- and GLCM-EpRE luciferase activity. All known forms of Nrf1 protein, remained unchanged in the lungs of mice with age or in response to nPM. Our study shows that Nrf1 could inhibit EpRE activity in vitro, whereas the precise role of Nrf1 in vivo requires further investigations. We conclude that Nrf1 may not be directly responsible for the loss of Nrf2-dependent inducibility of antioxidant and cytoprotective genes observed in aged animals

    Rust never sleeps: the continuing story of the Iron Bolt

    Get PDF
    Since 1981, Gordon Research Conferences have been held on the topic of Oxygen Radicals on a biennial basis, to highlight and discuss the latest cutting edge research in this area. Since the first meeting, one special feature of this conference has been the awarding of the so-called Iron Bolt, an award that started in jest but has gained increasing reputation over the years. Since no written documentation exists for this Iron Bolt award, this perspective serves to overview the history of this unusual award, and highlights various experiences of previous winners of this “prestigious” award and other interesting anecdotes

    Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish

    Get PDF
    Cellular metabolism provides various sources of hydrogen peroxide (H2O2) in different organelles and compartments. The suitability of H2O2 as an intracellular signaling molecule therefore also depends on its ability to pass cellular membranes. The propensity of the membranous boundary of the endoplasmic reticulum (ER) to let pass H2O2 has been discussed controversially. In this essay, we challenge the recent proposal that the ER membrane constitutes a simple barrier for H2O2 diffusion and support earlier data showing that (i) ample H2O2 permeability of the ER membrane is a prerequisite for signal transduction, (ii) aquaporin channels are crucially involved in the facilitation of H2O2 permeation, and (iii) a proper experimental framework not prone to artifacts is necessary to further unravel the role of H2O2 permeation in signal transduction and organelle biology. © 2016 Elsevier Inc

    Editorial

    No full text

    Editorial

    No full text

    Editorial

    No full text

    Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging

    Get PDF
    The elimination of oxidatively modified proteins is a crucial process in maintaining cellular homeostasis, especially during stress. Mitochondria are protein-dense, high traffic compartments, whose polypeptides are constantly exposed to superoxide, hydrogen peroxide, and other reactive species, generated by ‘electron leakage’ from the respiratory chain. The level of oxidative stress to mitochondrial proteins is not constant, but instead varies greatly with numerous metabolic and environmental factors. Oxidized mitochondrial proteins must be removed rapidly (by proteolytic degradation) or they will aggregate, cross-link, and cause toxicity. The Lon Protease is a key enzyme in the degradation of oxidized proteins within the mitochondrial matrix. Under conditions of acute stress Lon is highly inducible, possibly with the oxidant acting as the signal inducer, thereby providing increased protection. It seems that under chronic stress conditions, however, Lon levels actually decline. Lon levels also decline with age and with senescence, and senescent cells even lose the ability to induce Lon during acute stress. We propose that the regulation of Lon is biphasic, in that it is up-regulated during transient stress and down-regulated during chronic stress and aging, and we suggest that the loss of Lon responsiveness may be a significant factor in aging, and in age-related diseases
    corecore