140 research outputs found

    Removable partial dentures: The clinical need for innovation

    Get PDF
    Statement of problem: The number of partially dentate adults is increasing, and many patients will require replacement of missing teeth. Although current treatment options also include fixed partial dentures and implants, removable partial dentures (RPDs) can have advantages and are widely used in clinical practice. However, a significant need exists to advance materials and fabrication technologies because of the unwanted health consequences associated with current RPDs. Purpose: The purpose of this review was to assess the current state of and future need for prosthetics such as RPDs for patients with partial edentulism, highlight areas of weakness, and outline possible solutions to issues that affect patient satisfaction and the use of RPDs. Material and methods: The data on treatment for partial edentulism were reviewed and summarized with a focus on currently available and future RPD designs, materials, means of production, and impact on oral health. Data on patient satisfaction and compliance with RPD treatment were also reviewed to assess patient-centered care. Results: Design, materials, ease of repair, patient education, and follow-up for RPD treatment all had a significant impact on treatment success. Almost 40% of patients no longer use their RPD within 5 years because of factors such as sociodemographics, pain, and esthetics. Research on RPD-based treatment for partial edentulism for both disease-oriented and patient-centered outcomes is lacking. Conclusions: Future trials should evaluate new RPD materials and design technologies and include both long-term follow-up and health-related and patient-reported outcomes. Advances in materials and digital design/production along with patient education promise to further the application of RPDs and improve the quality of life for patients requiring RPDs

    Impact of plants on the diversity and activity of methylotrophs in soil

    Get PDF
    Background Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. Results Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. Conclusion In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle

    The influence of cultivation methods on Shewanella oneidensis physiology and proteome expression

    Get PDF
    High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanellaoneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research

    Calcium-(organo)aluminum-proton competition for adsorption to tomato root cell walls: Experimental data and exchange model calculations

    No full text
    Aluminum interacts with negatively charged surfaces in plant roots, causing inhibition of growth and nutrient uptake in plants growing on acid soils. Pectins in the root cell wall form the major cation adsorption surface, with Ca2+ as the main adsorbing cation. Adsorption of Al3+ and Ca2+ to isolated cell wall material of tomato (Lycopersicon esculentum L.) roots was examined at pH 3.00-4.25 and in the presence of the aluminum chelators citrate and malate. Al3+ displaced Ca2+ from its pectic binding sites in the cell wall to a large extent but apparently also bound to non-Ca binding groups, displacing protons. Aluminum adsorption depended on the pH of the solution, with little Al adsorbing to the cell wall material at very low pH (< 3.50). Under very acid conditions Al3+ replacing Ca2+ at pectic cross-links is therefore not expected to play a role in X toxicity. Equimolar concentrations of citrate decreased Al competition for Ca binding sites almost completely, whereas malate only had an intermediate effect. The competition of (organo) Al3+, Ca2+, and H+ for cell wall binding sites was described adequately using the Gaines-Thomas exchange model

    Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis

    No full text
    ‘Candidatus Methylomirabilis oxyfera’ is a denitrifying methanotroph that performs nitrite‐dependent anaerobic methane oxidation through a newly discovered intra‐aerobic pathway. In this study, we investigated the response of a M. oxyfera enrichment culture to oxygen. Addition of either 2% or 8% oxygen resulted in an instant decrease of methane and nitrite conversion rates. Oxygen exposure also led to a deviation in the nitrite to methane oxidation stoichiometry. Oxygen‐uptake and inhibition studies with cell‐free extracts displayed a change from cytochrome c to quinol as electron donor after exposure to oxygen. The change in global gene expression was monitored by deep sequencing of cDNA using Illumina technology. After 24 h of oxygen exposure, transcription levels of 1109 (out of 2303) genes changed significantly when compared with the anoxic period. Most of the genes encoding enzymes of the methane oxidation pathway were constitutively expressed. Genes from the denitrification pathway, with exception of one of the putative nitric oxide reductases, norZ2, were severely downregulated. The majority of known genes involved in the vital cellular functions, such as nucleic acid and protein biosynthesis and cell division processes, were downregulated. The alkyl hydroperoxide reductase, ahpC, and genes involved in the synthesis/repair of the iron–sulfur clusters were among the few upregulated genes. Further, transcription of the pmoCAB genes of aerobic methanotrophs present in the non‐M. oxyfera community were triggered by the presence of oxygen. Our results show that oxygen‐exposed cells of M. oxyfera were under oxidative stress and that in spite of its oxygenic capacity, exposure to microoxic conditions has an overall detrimental effect
    • 

    corecore