21 research outputs found

    Kendomycin Cytotoxicity against Bacterial, Fungal, and Mammalian Cells Is Due to Cation Chelation

    Get PDF
    Kendomycin is a small-molecule natural product that has gained significant attention due to reported cytotoxicity against pathogenic bacteria and fungi as well as a number of cancer cell lines. Despite significant biomedical interest and attempts to reveal its mechanism of action, the cellular target of kendomycin remains disputed. Herein it is shown that kendomycin induces cellular responses indicative of cation stress comparable to the effects of established iron chelators. Furthermore, addition of excess iron and copper attenuated kendomycin cytotoxicity in bacteria, yeast, and mammalian cells. Finally, NMR analysis demonstrated a direct interaction with cations, corroborating a close link between the observed kendomycin polypharmacology across different species and modulation of iron and/or copper levels.Peer reviewe

    Relation of gallbladder function and Helicobacter pylori infection to gastric mucosa inflammation in patients with symptomatic cholecystolithiasis

    Get PDF
    Background. Inflammatory alterations of the gastric mucosa are commonly caused by Helicobacter pylori (Hp) infection in patients with symptomatic gallstone disease. However, the additional pathogenetic role of an impaired gallbladder function leading to an increased alkaline duodenogastric reflux is controversially discussed. Aim:To investigate the relation of gallbladder function and Hp infection to gastric mucosa inflammation in patients with symptomatic gallstones prior to cholecystectomy. Patients: Seventy-three patients with symptomatic gallstones were studied by endoscopy and Hp testing. Methods: Gastritis classification was performed according to the updated Sydney System and gallbladder function was determined by total lipid concentration of gallbladder bile collected during mainly laparoscopic cholecystectomy. Results: Fifteen patients revealed no, 39 patients mild, and 19 moderate to marked gastritis. No significant differences for bile salts, phospholipids, cholesterol, or total lipids in gallbladder bile were found between these three groups of patients. However, while only 1 out of 54 (< 2%) patients with mild or no gastritis was found histologically positive for Hp, this infection could be detected in 14 (74%) out of 19 patients with moderate to marked gastritis. Conclusion: Moderate to marked gastric mucosa inflammation in gallstone patients is mainly caused by Hp infection, whereas gallbladder function is not related to the degree of gastritis. Thus, an increased alkaline duodenogastric reflux in gallstone patients seems to be of limited pathophysiological relevance. Copyright (c) 2006 S. Karger AG, Basel

    Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism

    Get PDF
    Membrane-bound pyrophosphatases (M-PPases), which couple proton/sodium ion transport to pyrophosphate synthesis/hydrolysis, are important in abiotic stress resistance and in the infectivity of protozoan parasites. Here, three M-PPase structures in different catalytic states show that closure of the substrate-binding pocket by helices 5-6 affects helix 13 in the dimer interface and causes helix 12 to move down. This springs a 'molecular mousetrap', repositioning a conserved aspartate and activating the nucleophilic water. Corkscrew motion at helices 6 and 16 rearranges the key ionic gate residues and leads to ion pumping. The pumped ion is above the ion gate in one of the ion-bound structures, but below it in the other. Electrometric measurements show a single-turnover event with a non-hydrolysable inhibitor, supporting our model that ion pumping precedes hydrolysis. We propose a complete catalytic cycle for both proton and sodium-pumping M-PPases, and one that also explains the basis for ion specificity.Peer reviewe

    Overcoming bottlenecks in the membrane protein structural biology pipeline

    Get PDF
    Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, leading to their aggregation. The use of orthologues, mutants and fusion tags has helped improve protein stability, but at the expense of not working with the sequence of interest. Novel detergents such as glucose neopentyl glycol (GNG), maltose neopentyl glycol (MNG) and calixarene-based detergents can improve protein stability without compromising their solubilizing properties. Styrene maleic acid lipid particles (SMALPs) focus on retaining the native lipid bilayer of a membrane protein during purification and biophysical analysis. Overcoming bottlenecks in the membrane protein structural biology pipeline, primarily by maintaining protein stability, will facilitate the elucidation of many more membrane protein structures in the near future

    A method for detergent-free isolation of membrane proteins in their local lipid environment.

    Get PDF
    Despite the great importance of membrane proteins, structural and functional studies of these proteins present major challenges. A significant hurdle is the extraction of the functional protein from its natural lipid membrane. Traditionally achieved with detergents, purification procedures can be costly and time consuming. A critical flaw with detergent approaches is the removal of the protein from the native lipid environment required to maintain functionally stable protein. This protocol describes the preparation of styrene maleic acid (SMA) co-polymer to extract membrane proteins from prokaryotic and eukaryotic expression systems. Successful isolation of membrane proteins into SMA lipid particles (SMALPs) allows the proteins to remain with native lipid, surrounded by SMA. We detail procedures for obtaining 25 g of SMA (4 d); explain the preparation of protein-containing SMALPs using membranes isolated from Escherichia coli (2 d) and control protein-free SMALPS using E. coli polar lipid extract (1-2 h); investigate SMALP protein purity by SDS-PAGE analysis and estimate protein concentration (4 h); and detail biophysical methods such as circular dichroism (CD) spectroscopy and sedimentation velocity analytical ultracentrifugation (svAUC) to undertake initial structural studies to characterize SMALPs (āˆ¼2 d). Together, these methods provide a practical tool kit for those wanting to use SMALPs to study membrane proteins

    The Structure and Catalytic Cycle of a Sodium-Pumping Pyrophosphatase

    No full text

    Molecular view of ER membrane remodeling by the Sec61/TRAP translocon

    No full text
    Protein translocation across the endoplasmic reticulum (ER) membrane is an essential step during protein entry into the secretory pathway. The conserved Sec61 protein-conducting channel facilitates polypeptide translocation and coordinates cotranslational polypeptide-processing events. In cells, the majority of Sec61 is stably associated with a heterotetrameric membrane protein complex, the translocon-associated protein complex (TRAP), yet the mechanism by which TRAP assists in polypeptide translocation remains unknown. Here, we present the structure of the core Sec61/TRAP complex bound to a mammalian ribosome by cryogenic electron microscopy (cryo-EM). Ribosome interactions anchor the Sec61/TRAP complex in a conformation that renders the ER membrane locally thinner by significantly curving its lumenal leaflet. We propose that TRAP stabilizes the ribosome exit tunnel to assist nascent polypeptide insertion through Sec61 and provides a ratcheting mechanism into the ER lumen mediated by direct polypeptide interactions.Peer reviewe
    corecore