106 research outputs found

    Selective lactase deficiency is common in pediatric patients undergoing upper endoscopy

    Get PDF
    Lactase deficiency can lead to significant symptoms in the pediatric population. To date, few studies have examined the prevalence of enzyme testing-based lactase and other disaccharidase deficiencies (DDs) in pediatric patients undergoing upper endoscopic evaluation. The primary objective of this study was to determine the prevalence of selective lactase and other DDs amongst a large cohort of pediatric patients with and without inflammatory bowel disease (IBD: Crohn’s disease and ulcerative colitis) via a chart review of 739 patients who underwent esophago-gastro-dudenoscopy EGD between April 2010 and August 2016. We identified 560 pediatric patients (ages 1-18 years) who underwent mucosal enzyme testing at the time of their EGD. The overall rate of lactase deficiency (LD) was 39%. LD positively correlated with age (p=0.00017), but there was no significant difference between age matched IBD and non-IBD patients (45% vs. 42% p=0.68). Four patients (0.17%) were found to have selective maltase deficiency. No selective sucrase or palatinase deficiency was identified. Statistically significant differences occurred in lactase deficiency amongst patients of different races. In conclusion, lactase deficiency is a relatively common finding in children undergoing EGD though at no increased rate amongst the IBD patient population. Disaccharidase testing should be considered in pediatric patients undergoing EGD

    DNA methylation-associated colonic mucosal immune and defense responses in treatment-naïve pediatric ulcerative colitis

    Get PDF
    Inflammatory bowel diseases (IBD) are emerging globally, indicating that environmental factors may be important in their pathogenesis. Colonic mucosal epigenetic changes, such as DNA methylation, can occur in response to the environment and have been implicated in IBD pathology. However, mucosal DNA methylation has not been examined in treatment-naïve patients. We studied DNA methylation in untreated, left sided colonic biopsy specimens using the Infinium HumanMethylation450 BeadChip array. We analyzed 22 control (C) patients, 15 untreated Crohn’s disease (CD) patients, and 9 untreated ulcerative colitis (UC) patients from two cohorts. Samples obtained at the time of clinical remission from two of the treatment-naïve UC patients were also included into the analysis. UC-specific gene expression was interrogated in a subset of adjacent samples (5 C and 5 UC) using the Affymetrix GeneChip PrimeView Human Gene Expression Arrays. Only treatment-naïve UC separated from control. One-hundred-and-twenty genes with significant expression change in UC (> 2-fold, P < 0.05) were associated with differentially methylated regions (DMRs). Epigenetically associated gene expression changes (including gene expression changes in the IFITM1, ITGB2, S100A9, SLPI, SAA1, and STAT3 genes) were linked to colonic mucosal immune and defense responses. These findings underscore the relationship between epigenetic changes and inflammation in pediatric treatment-naïve UC and may have potential etiologic, diagnostic, and therapeutic relevance for IBD

    Mucosal microbiome is predictive of pediatric Crohn’s disease across geographic regions in North America [version 2; peer review: 2 approved]

    Get PDF
    Background: Patients with Crohn’s disease (CD) have an altered intestinal microbiome, which may facilitate novel diagnostic testing. However, accuracy of microbiome classification models across geographic regions may be limited. Therefore, we sought to examine geographic variation in the microbiome of patients with CD from North America and test the performance of a machine learning classification model across geographic regions. Methods: The RISK cohort included 447 pediatric patients with CD and 221 non-inflammatory bowel disease controls from across North America. Terminal ileum, rectal and fecal samples were obtained prior to treatment for microbiome analysis. We divided study sites into 3 geographic regions to examine regional microbiome differences. We trained and tested the performance of a machine learning classification model across these regions. Results: No differences were seen in the mucosal microbiome of patients with CD across regions or in either the fecal or mucosal microbiomes of controls. Machine learning classification algorithms for patients with CD performed well across regions (area under the receiver operating characteristic curve [AUROC] range of 0.85-0.91) with the best results from terminal ileum. Conclusions: This study demonstrated the feasibility of microbiome based diagnostic testing in pediatric patients with CD within North America, independently from regional influences

    Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles.

    Get PDF
    Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs), conversely, epigenotype is established stochastically in the early embryo then maintained in differentiated lineages, resulting in dramatic and systemic interindividual variation in epigenetic regulation. In the mouse, maternal nutrition affects this process, with permanent phenotypic consequences for the offspring. MEs have not previously been identified in humans. Here, using an innovative 2-tissue parallel epigenomic screen, we identified putative MEs in the human genome. In autopsy samples, we showed that DNA methylation at these loci is highly correlated across tissues representing all 3 embryonic germ layer lineages. Monozygotic twin pairs exhibited substantial discordance in DNA methylation at these loci, suggesting that their epigenetic state is established stochastically. We then tested for persistent epigenetic effects of periconceptional nutrition in rural Gambians, who experience dramatic seasonal fluctuations in nutritional status. DNA methylation at MEs was elevated in individuals conceived during the nutritionally challenged rainy season, providing the first evidence of a permanent, systemic effect of periconceptional environment on human epigenotype. At MEs, epigenetic regulation in internal organs and tissues varies among individuals and can be deduced from peripheral blood DNA. MEs should therefore facilitate an improved understanding of the role of interindividual epigenetic variation in human disease

    History-Dependent Mechanical Properties of Permeabilized Rat Soleus Muscle Fibers

    Get PDF
    AbstractPermeabilized rat soleus muscle fibers were subjected to repeated triangular length changes (paired ramp stretches/releases, 0.03 l0,±0.1 l0 s−1 imposed under sarcomere length control) to investigate whether the rate of stiffness recovery after movement increased with the level of Ca2+ activation. Actively contracting fibers exhibited a characteristic tension response to stretch: tension rose sharply during the initial phase of the movement before dropping slightly to a plateau, which was maintained during the remainder of the stretch. When the fibers were stretched twice, the initial phase of the response was reduced by an amount that depended on both the level of Ca2+ activation and the elapsed time since the first movement. Detailed analysis revealed three new and important findings. 1) The rates of stiffness and tension recovery and 2) the relative height of the tension plateau each increased with the level of Ca2+ activation. 3) The tension plateau developed more quickly during the second stretch at high free Ca2+ concentrations than at low. These findings are consistent with a cross-bridge mechanism but suggest that the rate of the force-generating power-stroke increases with the intracellular Ca2+ concentration and cross-bridge strain

    Roadmap for investigating epigenome deregulation and environmental origins of cancer.

    Get PDF
    The interaction between the (epi)genetic makeup of an individual and his/her environmental exposure record (exposome) is accepted as a determinant factor for a significant proportion of human malignancies. Recent evidence has highlighted the key role of epigenetic mechanisms in mediating gene-environment interactions and translating exposures into tumorigenesis. There is also growing evidence that epigenetic changes may be risk factor-specific ('fingerprints') that should prove instrumental in the discovery of new biomarkers in cancer. Here, we review the state of the science of epigenetics associated with environmental stimuli and cancer risk, highlighting key developments in the field. Critical knowledge gaps and research needs are discussed as well as advances in epigenomics that may help an understanding of the functional relevance of epigenetic alterations. Key elements required for causality inferences linking epigenetic changes to exposure and cancer are discussed as well as how these alterations can be incorporated in carcinogen evaluation and in understanding mechanisms underlying epigenome deregulation by the environment

    Roadmap for investigating epigenome deregulation and environmental origins of cancer: Epigenetics and cancer

    Get PDF
    The interaction between the (epi)genetic makeup of an individual and his/her environmental exposure record (exposome) is accepted as a determinant factor for a significant proportion of human malignancies. Recent evidence has highlighted the key role of epigenetic mechanisms in mediating gene–environment interactions and translating exposures into tumorigenesis. There is also growing evidence that epigenetic changes may be risk factor‐specific (“fingerprints”) that should prove instrumental in the discovery of new biomarkers in cancer. Here, we review the state of the science of epigenetics associated with environmental stimuli and cancer risk, highlighting key developments in the field. Critical knowledge gaps and research needs are discussed and advances in epigenomics that may help in understanding the functional relevance of epigenetic alterations. Key elements required for causality inferences linking epigenetic changes to exposure and cancer are discussed and how these alterations can be incorporated in carcinogen evaluation and in understanding mechanisms underlying epigenome deregulation by the environment

    Two-stage Genome-wide Methylation Profiling in Childhood-onset Crohn's Disease Implicates Epigenetic Alterations at the VMP1/MIR21 and HLA Loci

    Get PDF
    Background: As a result of technological and analytical advances, genome-wide characterization of key epigenetic alterations is now feasible in complex diseases. We hypothesized that this may provide important insights into gene-environmental interactions in Crohn's disease (CD) and is especially pertinent to early onset disease. Methods: The Illumina 450K platform was applied to assess epigenome-wide methylation profiles in circulating leukocyte DNA in discovery and replication pediatric CD cohorts and controls. Data were corrected for differential leukocyte proportions. Targeted replication was performed in adults using pyrosequencing. Methylation changes were correlated with gene expression in blood and intestinal mucosa. Results: We identified 65 individual CpG sites with methylation alterations achieving epigenome-wide significance after Bonferroni correction (P &#60; 1.1 × 10−7), and 19 differently methylated regions displaying unidirectional methylation change. There was a highly significant enrichment of methylation changes around GWAS single nucleotide polymorphisms (P = 3.7 × 10−7), notably the HLA region and MIR21. Two-locus discriminant analysis in the discovery cohort predicted disease in the pediatric replication cohort with high accuracy (area under the curve, 0.98). The findings strongly implicate the transcriptional start site of MIR21 as a region of extended epigenetic alteration, containing the most significant individual probes (P = 1.97 × 10−15) within a GWAS risk locus. In extension studies, we confirmed hypomethylation of MIR21 in adults (P = 6.6 × 10−5, n = 172) and show increased mRNA expression in leukocytes (P &#60; 0.005, n = 66) and in the inflamed intestine (P = 1.4 × 10−6, n = 99). Conclusions: We demonstrate highly significant and replicable differences in DNA methylation in CD, defining the disease-associated epigenome. The data strongly implicate known GWAS loci, with compelling evidence implicating MIR21 and the HLA region.</p

    Epigenetics and the Developmental Origins of Inflammatory Bowel Diseases

    No full text
    The gut microbiota, the intestinal mucosa and the host immune system are among the large biological networks involved in the development of inflammatory bowel disease (IBD), which includes Crohn disease (CD) and ulcerative colitis (UC). Host genetics and environmental factors can significantly modulate the interactive relationships among these biological systems and influence predilection toward IBD. High monozygotic twin discordance rates and the rapid rise in the prevalence of IBD indicate that environmental influences may be as important or even more important in their pathogenesis than genetic susceptibility. However, the nature and timing of environmental factors critical for inducing IBD remain largely unknown. The molecular mechanisms and the key biological component(s) that may be affected by such factors are also in question. Epigenetic changes, such as DNA methylation (the methylation of cytosines followed by a guanine in CpG dinucleotides) can be modified by environmental influences during finite developmental periods and have been implicated in the pathogenesis of IBD. Mucosal DNA methylation can also react to changes in the commensal microbiota, underscoring the intercalating relationships among the large biological systems involved in gastrointestinal disorders. Therefore, transient environmental influences during specific periods of development may induce critical change(s) in an isolated or concomitant fashion within the intestinal biomic networks and lead to increased susceptibility to IBD. The present review focuses on the emerging paradigm shift considering IBD to originate from critical environmental effects during pre- and postnatal development
    corecore