895 research outputs found

    Multi-Wavelength Variability of the Synchrotron Self-Compton Model for Blazar Emission

    Get PDF
    Motivated by recent reports of strongly correlated radio and X-ray variability in 3C279 (Grandi, etal 1995), we have computed the relative amplitudes of variations in the synchrotron flux at ν\nu and the self-Compton X-ray flux at 1 keV (R(ν)R(\nu)) for a homogeneous sphere of relativistic electrons orbiting in a tangled magnetic field. Relative to synchrotron self-Compton scattering without induced Compton scattering, stimulated scattering reduces the amplitude of R(ν)R(\nu) by as much as an order of magnitude when \tau_T \gtwid 1. When τT\tau_T varies in a fixed magnetic field, RτR_{\tau} increases monotonically from 0.01 at νo\nu_o, the self-absorption turnover frequency, to 0.50.5 at 100νo100 \nu_o. The relative amplitudes of the correlated fluctuations in the radio-mm and X-ray fluxes from 3C279 are consistent with the synchrotron self-Compton model if τT\tau_T varies in a fixed magnetic field and induced Compton scattering is the dominant source of radio opacity. The variation amplitudes are are too small to be produced by the passage of a shock through the synchrotron emission region unless the magnetic field is perpendicular to the shock front.Comment: 21 pages, 4 fig

    Critical Phenomena in Neutron Stars I: Linearly Unstable Nonrotating Models

    Full text link
    We consider the evolution in full general relativity of a family of linearly unstable isolated spherical neutron stars under the effects of very small, perturbations as induced by the truncation error. Using a simple ideal-fluid equation of state we find that this system exhibits a type-I critical behaviour, thus confirming the conclusions reached by Liebling et al. [1] for rotating magnetized stars. Exploiting the relative simplicity of our system, we are able carry out a more in-depth study providing solid evidences of the criticality of this phenomenon and also to give a simple interpretation of the putative critical solution as a spherical solution with the unstable mode being the fundamental F-mode. Hence for any choice of the polytropic constant, the critical solution will distinguish the set of subcritical models migrating to the stable branch of the models of equilibrium from the set of subcritical models collapsing to a black hole. Finally, we study how the dynamics changes when the numerically perturbation is replaced by a finite-size, resolution independent velocity perturbation and show that in such cases a nearly-critical solution can be changed into either a sub or supercritical. The work reported here also lays the basis for the analysis carried in a companion paper, where the critical behaviour in the the head-on collision of two neutron stars is instead considered [2].Comment: 15 pages, 9 figure

    Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.

    Get PDF
    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes

    An algorithm to discover the k-clique cover in networks

    Get PDF
    In social network analysis, a k-clique is a relaxed clique, i.e., a k-clique is a quasi-complete sub-graph. A k-clique in a graph is a sub-graph where the distance between any two vertices is no greater than k. The visualization of a small number of vertices can be easily performed in a graph. However, when the number of vertices and edges increases the visualization becomes incomprehensible. In this paper, we propose a new graph mining approach based on k-cliques. The concept of relaxed clique is extended to the whole graph, to achieve a general view, by covering the network with k-cliques. The sequence of k-clique covers is presented, combining small world concepts with community structure components. Computational results and examples are presented

    The quest for companions to post-common envelope binaries: I. Searching a sample of stars from the CSS and SDSS

    Full text link
    As part of an ongoing collaboration between student groups at high schools and professional astronomers, we have searched for the presence of circum-binary planets in a bona-fide unbiased sample of twelve post-common envelope binaries (PCEBs) from the Catalina Sky Survey (CSS) and the Sloan Digital Sky Survey (SDSS). Although the present ephemerides are significantly more accurate than previous ones, we find no clear evidence for orbital period variations between 2005 and 2011 or during the 2011 observing season. The sparse long-term coverage still permits O-C variations with a period of years and an amplitude of tens of seconds, as found in other systems. Our observations provide the basis for future inferences about the frequency with which planet-sized or brown-dwarf companions have either formed in these evolved systems or survived the common envelope (CE) phase.Comment: accepted by A&

    Carboxy-Terminal Truncation Activates glp-1 Protein to Specify Vulval Fates in Caenorhabditis elegans

    Get PDF
    The glp-1 and lin-12 genes encode homologous transmembrane proteins that may act as receptors for cell interactions during development. The glp-1 product is required for induction of germ-line proliferation and for embryogenesis. By contrast, lin-12 mediates somatic cell interactions, including those between the precursor cells that form the vulval hypodermis (VPCs). Here we analyse an unusual allele of glp-1, glp-1(q35), which displays a semidominant multivulva phenotype (Muv), as well as the typical recessive, loss-of-function Glp phenotypes (sterility and embryonic lethality). We find that the effects of glp-1(q35) on VPC development mimic those of dominant lin-12 mutations, even in the absence of lin-12 activity. The glp-1(q35) gene bears a nonsense mutation predicted to eliminate the 122 C-terminal amino acids, including a ProGluSerThr (PEST) sequence thought to destabilize proteins. We suggest that the carboxy terminus bears a negative regulatory domain which normally inactivates glp-1 in the VPCs. We propose that inappropriate glp-1(q35) activity can substitute for lin-12 to determine vulval fate, perhaps by driving the VPCs to proliferate

    Three little pieces for computer and relativity

    Full text link
    Numerical relativity has made big strides over the last decade. A number of problems that have plagued the field for years have now been mostly solved. This progress has transformed numerical relativity into a powerful tool to explore fundamental problems in physics and astrophysics, and I present here three representative examples. These "three little pieces" reflect a personal choice and describe work that I am particularly familiar with. However, many more examples could be made.Comment: 42 pages, 11 figures. Plenary talk at "Relativity and Gravitation: 100 Years after Einstein in Prague", June 25 - 29, 2012, Prague, Czech Republic. To appear in the Proceedings (Edition Open Access). Collects results appeared in journal articles [72,73, 122-124

    Response rates in postal surveys of healthcare professionals between 1996 and 2005: An observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postal surveys are a frequently used method of data collection in health services research. Low response rates increase the potential for bias and threaten study validity. The objectives of this study were to estimate current response rates, to assess whether response rates are falling, to explore factors that might enhance response rates and to examine the potential for non-response bias in surveys mailed to healthcare professionals.</p> <p>Methods</p> <p>A random sample of postal or electronic surveys of healthcare workers (1996-2005) was identified from Medline, Embase or Psycinfo databases or Biomed Central. Outcome measures were survey response rate and non response analysis. Multilevel, multivariable logistic regression examined the relationship between response rate and publication type, healthcare profession, country and number of survey participants, questionnaire length and use of reminders.</p> <p>Results</p> <p>The analysis included 350 studies. Average response rate in doctors was 57.5% (95%CI: 55.2% to 59.8%) and significantly lower than the estimate for the prior 10 year period. Response rates were higher when reminders were sent (adjusted OR 1.3; 95%CI 1.1-1.6) but only half the studies did this. Response rates were also higher in studies with fewer than 1000 participants and in countries other than US, Canada, Australia and New Zealand. They were not significantly affected by publication type or healthcare profession (p > 0.05). Only 17% of studies attempted assessment of possible non-response bias.</p> <p>Conclusion</p> <p>Response rates to postal surveys of healthcare professionals are low and probably declining, almost certainly leading to unknown levels of bias. To improve the informativeness of postal survey findings, researchers should routinely consider the use of reminders and assess potential for non-response bias.</p
    corecore