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Abstract. In social network analysis, a k-clique is a relaxed clique, i.e., a k-

clique is a quasi-complete sub-graph. A k-clique in a graph is a sub-graph 

where the distance between any two vertices is no greater than k. The 

visualization of a small number of vertices can be easily performed in a graph. 

However, when the number of vertices and edges increases the visualization 

becomes incomprehensible. In this paper, we propose a new graph mining 

approach based on k-cliques. The concept of relaxed clique is extended to the 

whole graph, to achieve a general view, by covering the network with k-cliques.  

The sequence of k-clique covers is presented, combining small world concepts 

with community structure components. Computational results and examples are 

presented. 

Keywords: data mining, graph mining, social networks  

1   Introduction 

After the Tim Berners-Lee [2] communication in the International World Wide Web 

Conference WWW2006 about the three ages of the Web, there has been an explosion 

of interest in the social networks associated with Web 2.0 in an attempt to improve 

socializing and come up with a new model for knowledge management. 

 The term social network was coined by Barnes in 1954. However, the 

visualization using a graph, called sociogram, was presented by Moreno [18]. This 

scientific area of sociology tries to explain how diffusion of innovation works, why 

alliances and conflicts are generated in groups, how the leadership emerges and how 

the group structure affects the group efficacy.    

 A major development on the structure of social networks came from a remarkable 

experiment by the American psychologist Stanley Milgram [16]. Milgram’s 

experiment consisted in sending letters from people in Nebraska, in the Midwest, to 

de received in Boston, on the East Coast, where people were instructed to pass on the 

letters, by hand, to someone else they knew. The letters that reached the destination 

were passed by around six people. Milgram concluded that the experiment showed 
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that, on average, Americans are no more than six steps away from each other. This 

experiment led to the concepts of the six degrees of separation and the notion of 

small-world.  

 An interesting example of a small-world is the “Erdos Number” [12]. Erdos is the 

most prolific mathematician, being author of more than 1500 papers with more than 

500 co-authors. Erdos is the number zero and the researchers who worked with him 

are called Erdos number of 1. The co-authors of Erdos number of 1 are the Erdos 

number of 2, and so on, building one of the oldest small-world known. The work of 

Erdos and Renyi [8] presents interesting properties of random graphs. A brand new 

interest was revived with the Watts and Strogatz model, published in the Nature 

journal [22], that studies graphs with small-world properties and power-law degree 

distribution.  

 The analysts of social networks need to survey each person about their friends, ask 

for their approval to publish the data and keep the trace of the population for years. 

On the other hand, the social networks like MySpace or LinkedIn provide the required 

data.  

 The visualization of a small number of vertices can be completely mapped. 

However, when the number of vertices and edges increases the visualization becomes 

incomprehensible. The large amount of data extracted from the Internet is not 

compatible with the complete drawing. There is a pressing need for new patterns 

recognition tools and statistical methods to quantify large graphs and predict the 

behavior of network systems. 

 Graph mining can be defined as the science and the art of extracting useful 

knowledge like patterns and outliers provided respectively by repeated and sporadic 

data, from large graphs or complex networks [9], [6]. There are many differences 

between graphs; however, some patterns show up regularly and the main ones appear 

to be: the small worlds, the degree distribution and the connected components. The 

connected components have essentially been studied in two contexts: (a) the local 

neighborhoods, such as the clustering coefficient and (b) the node groups, such as the 

graph partitions and bipartite cores [6]. In this work the connected components are 

studied using the graph partition approach. The proposed Socratic query is the 

following: How many small world components (or k-cliques) are needed to cover (or 

to create partitions of) the whole graph?  

 In this paper, we propose new graph mining measures based on k-clique covering, 

to obtain a general view of the graph. In section 2 we review the social network 

concepts, detailing the cohesive subgroup structures. In section 3 we present the two-

phase algorithm that looks first for cohesive subgroups and second to the minimum 

set of cohesive subgroups that cover all the vertices. In section 4 computational 

results and examples are presented. Finally, in section 5 we draw some conclusions.   

2 Network Concepts 

Social Network Analysis is a very relevant technique, which has emerged in modern 

sociology and studies the interaction between individuals, organizations and other 
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kinds of entities.  See [19] and [21] for the theoretical basis and key techniques in 

social networks.  

 The representation of a social network was quite influenced by graph theory. In 

the social networks the set of vertices (or nodes) correspond to the “actors” (i.e. 

people, companies, social actors) and the set of edges corresponds to the “ties” (i.e. 

relationships, associations, links).  

 The sociologic applications of cohesive subgroups can include groups such as 

work groups, sport teams, political party, religious cults, or hidden structures like 

criminal gangs and terrorist cells. In this section we will detail some techniques for 

cohesive subgroups like the cliques and relaxed cliques, such as k-clique, k-club/k-

clan and k-plex. 

2.1   Clique 

Given an undirected graph G= (V, E) where V denotes the set of vertices and E the set 

of edges, the graph G1= (V1, E1) is called a sub-graph of G if V1⊆V, E1⊆E and for 

every edge (vi, vj)∈ E1 the vertices  vi,vj∈ V1. A sub-graph G1 is said to be complete 

if there is an edge for each pair of vertices. A complete sub-graph is also called a 

clique, see figure 1.  A clique is maximal, if it is not contained in any other clique. 

The clique number of a graph is equal to the cardinality of the largest clique of G and 

it is obtained by solving the maximum clique NP-hard problem. 

 

 

Fig. 1.   Cliques with 1, 2, 3, 4, 5 and 6 vertices 

 The clique structure, where there must be an edge for each pair of vertices, shows 

many restrictions in real life modeling. So, alternative approaches were suggested in 

order to relax the clique concept, such as k-clique, k-clan/k-club and k-plex. 

2.2   k-clique 

Luce [15] introduced the distance base model called k-clique, where k is the 

maximum path length between each pair of vertices.  A k-clique is a subset of vertices 

C such that, for every i, j∈ C, the distance d(i, j)≤ k. The 1-clique is identical to a 

clique, because the distance between the vertices is one edge. The 2-clique is the 

maximal complete sub-graph with a path length of one or two edges. The path 

distance two can be exemplified by the “friend of a friend” connection in social 

relationships. In social websites like the LinkedIn, each member can reach his own 

connections and also the two and three degrees away. The increase of the value k 

corresponds to a gradual relaxation of the criterion of clique membership. See figure 

2. 
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Fig. 2.  k-cliques examples 

2.3   k-clan and k-club 

A limitation of the k-clique model is that some vertices may be distant from the 

group, i.e. the distance, between two nodes, may correspond to a path involving nodes 

that do not belong to the k-clique. To overcome this handicap Alba [1] and Mokken 

[17] introduced the diameter based models called k-club and k-clan. The length of the 

shortest path between vertices u and v in G is denoted by the distance d(u,v). The 

diameter of G is given by diam(G)= max d(u, v) for all u,v∈ V. To find all k-clan, 

firstly all the k-cliques S
i
 must be found and then the restriction diam(G[S])≤ k 

applied to remove the undesired k-cliques. In figure 3, on the left, the 2-clique 

{1,2,3,4,5} was removed because the d(4,5)=3.  Another approach to the diameter 

models is the k-club which is defined as a subset of vertices S such that diam(G[S])≤ 

k. In the following figure two 2-cliques: {1,2,3,4,5} and {2,3,4,5,6}, one 2-clan: 

{2,3,4,5,6} and three 2-clubs: {1,2,3,4}, {1,2,3,5} and {2,3,4,5,6} can be found.  

 

 

 

 

 

 

 

 

 

 

Fig.3.   2-clans, 2-clubs (left) and 3-plex (right) 

2.4   k-plex 

An alternative way of relaxing a clique is the k-plex concept which takes into account 

the vertices degree. The degree of a vertex of a graph is the number of edges incident 

on the vertex, and is denoted deg(v). The maximum degree of a graph G is the 
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maximum degree of its vertices and is denoted by ∆(G). On the other hand, the 

minimum degree is the minimum degree of its vertices and is denoted by δ(G).  A 

subset of vertices S is said to be a k-plex if the minimum degree in the induced sub-

graph δ(G[S])≥ |S|− k. In figure 3, on the right, the graph with 6 vertices, |S|=6, and 

the degree of vertices 1, 3, 4 and 5 does not exceed the value 3. So, the minimum 

degree in the induced sub-graph δ(G[S]) is 3. For |S|=6, k=3 is obtained.  

3. The Two Phase Algorithm 

Complex network and graph mining measures are essentially based on low 

complexity computational procedures like the diameter of the graph, the degree 

distribution of the nodes and connectivity checking, underestimating the knowledge 

of the graph structure components. In this paper we propose a graph mining measure 

based on k-clique cover, to understand the structure of the graph better, by combining 

small worlds with the cohesive subgroup analysis.  

 In order to find the k-cliques minimum cover a two-phase algorithm is proposed. 

First, all the maximal k-cliques in the graph are found. Second, the minimum subset 

of the k-cliques is chosen to cover all the vertices of the graph. 

 To find all the maximal k-cliques in the graph, we use a simple transformation of 

the graph, in such a way that we can reuse an already studied algorithm, the maximum 

clique algorithm.  

 

Procedure 1: A two-phase algorithm to find the k-clique cover 

Input: distance k and graph G 

Output: k-clique cover 

1. Find all maximal k-cliques in graph G 

1.1. Graph transformation into a k-G (Proc. 2) 

1.2. Apply maximum clique algorithm (Proc. 3) 

2. Find the minimum cover of G with k-cliques 

2.1. Apply set covering algorithm (Proc. 4) 

3.1. Maximal k-cliques in graph G 

This section details in graph transformation procedure and the generation of the 

maximal k-cliques. 

3.1.1. Graph Transformation 

The transformation of a graph G(V,E) into a graph such that for every i,j∈V, the 

distance d(i, j) ≤ k, we denote graph k-G(V,E). 

 To create a graph k-G(V,E), the Floyd Algorithm [10] that finds all the shortest 

paths in a graph is reused; and then for each edge less or equal to k, an edge is created 

in the new graph.   

 



      Luís Cavique, Armando B. Mendes, Jorge M.A. Santos  

 

6 

 

Procedure 2: Graph transformation  

Input: k, M[n,n] the adjacent matrix of graph G 

Output:  D[n,n] the k-distance matrix of graph G (or k-Graph) 

1. D=M 

2. For each (h,i,j) D[i,j] = min(D[i,j], D[i,h]+D[h,j]) 

3. For each (i,j) if  (D[i,j] <=k) D[i,j]=1 else D[i,j]=0 

4. Return D; 

3.1.2. Maximum Clique Algorithm 
The Maximum Clique is a NP-hard problem that aims to find the largest complete 

sub-graph in a given graph. In this approach we intend to find a lower bound for the 

maximization problem, based in the heuristics proposed by Johnson [13] and in the 

meta-heuristic that uses Tabu Search developed by Soriano and Gendreau [20]. Part 

of the described work in this section can also be found in [4] and [3]. 

 We define A(S) as the set of vertices which are adjacent to vertices of a current 

solution S. Let n=|S| be the cardinality of a clique S and A
k
(S) the subset of vertices 

with k arcs incident in S. A(S) can be divided into subgroups A(S) = ∪A
k
(S), 

k=1,..,n. The cardinality of the vertex set |V| is equal to the sum of the adjacent 

vertices A(S) and the non-adjacent ones A
0
(S), plus |S|, resulting in |V|= Σ|A

k
(S)|+n, 

k= 0,.., n.  For a given solution S, we define a neighborhood N(S) if it generates a 

feasible solution S’. In this work we are going to use three neighborhood structures. 

 

We consider the following notation: 

N
+
 (S) = {S´: S´= S ∪{v

i
}, v

i
∈A

n
(S)} 

N
–
 (S) = {S´: S´= S \{v

i
}, v

i
∈S} 

N
0
 (S) = {S´: S´= S ∪{v

i
}\{v

k
}, v

i
∈ A

n-1
(S), v

k
∈S} 

S – the current solution 

S*– the highest cardinality maximal clique found so far 

T– the tabu list 

N(S) – neighborhood structures 

 

Procedure 3: Tabu Heuristic for the Maximum Clique Problem  

Input: k-Graph, complete sub-graph S 

Output: clique S* 

1. T=∅;  S*=S;  

2. while not end condition 

2.1.       if (N
+
(S)\T ≠ null) choose the maximum S’ 

2.2.       else if (N
0
(S)\T ≠ null) choose the maximum S’; update T 

2.2.1.            else choose the maximum S’ in  N
–
(S); update T 

2.3.        update S=S’ 

2.4.        if  (|S|>|S*|)  S*=S; 

3. end while; 

4. return S*; 
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Finding a maximal clique in a k-graph is the same as finding a maximal k-clique in a 

graph. To generate a large set of maximal k-cliques, a multi-start algorithm is used, 

which calls the Tabu Heuristic for Maximum Clique Problem. 

3.2. Minimum k-cliques Cover 

The input for the k-clique cover is a matrix where the lines correspond to the vertices 

of the graph and each column is a k-clique that covers a certain number of vertices. 

The Clique Cover heuristic proposed by Kellerman [14] and improved by Chvatal [5] 

is described in the following pseudo-code.  

 

We consider the following notation: 

M[line, column] or M[vertex, k-clique] – input matrix  

C – vector of the cost of each column 

V – vertex set  of G(V,E) 

S – the set covering solution  

Procedure 4: Heuristic for the k-clique covering 

Input: M [line, column], C, V 

Output: the cover S 

1. Initialize R=M, S=∅, 

2. While R ≠ ∅  do 

2.1.         Choose the best line i*∈R such as |M(i*,j)|=min |M(i,j)| ∀j 

2.2.         Choose the best column j* that covers line i*  

2.3.         Update R and S, R=R\M(i,j*) ∀i, S=S∪{j*} 

3.  End while 

4. Sort the cover S by descending order of costs  

5. For each Si do if (S\Si is still a cover) then S=S\Si 

6. Return S 

 

In the constructive heuristic, for each iteration, choose a line to be covered, the best 

column that covers the line and update the solution S and the remaining vertex R. The 

chosen line is usually the line that is more difficult to cover, i.e. the line which 

corresponds to fewer columns. After reaching the cover set, the second step is to 

remove redundancy, by sorting the cover in descending order of cost and checking if 

each k-clique is really essential.  

 This constructive heuristic can be improved using a Tabu Search heuristic that 

removes the most expensive columns and re-builds a new solution as presented in 

[11]. 

 The set partition problem is very similar to the set covering one. The partition of a 

set is a division into non-overlapping parts that cover all the set. On the other hand, 

the set covering problem allows overlapping called over-covered elements. In both 

problems less-covered elements are not allowed.  
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3.3. Numeric example 

Given a graph with 5 vertices and 4 edges with E={(1,2), (2,3), (3,4) ,(4,5)} in figure 

4, applying the graph transformation, Procedure 2, with k=2, a new graph with 5 

vertices and 7 edges is obtained with k-E={(1,2), (1,3), (2,3), (2,4), (3,4) ,(3,5),(4,5)}. 

 

 

 

 

 

 

 

 

Fig. 4.   Example of a graph G and its transformation into a 2-G (Proc. 2) 

 Running a multi-start algorithm, Procedure 3, with the maximum clique problem, 

three maximal cliques of size 3 can be easily identified: (1,2,3), (2,3,4) and (3,4,5). 

 

 

 

 

 

 

Fig. 5.   k-clique generation  (Proc. 3)  

 Finally, running the k-cliques cover, Procedure 4, two subgroups are found that 

cover all the vertices. The 2-clique cover is equal to two. Notice that the vertex 

number 3 appears in the two sets. In social network analysis this is called a “bridge”. 

Indeed, vertex 3, with distance 2 can reach any other vertex.   

 

 

 

 

 

 

 

 

 

Fig. 6. Two 2-cliques cover the whole graph (Proc. 4) 
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Figure 6 presents the two subsets solution using a matrix representation and a graph. 

For large graphs and a large number of subsets the visualization gets worse. To get a 

better general view of the data we suggest the matrix representation, which is the 

output of the set covering heuristic. 

4. Computational Results 

To implement the computational results of this algorithm some choices must be made 

such as the computational environment, the datasets and the graph mining measures.  

 The computer programs were written in C language and the Dev-C++ compiler 

was used. The computational results were obtained from a 2.53GHz Intel Core-2Duo 

processor with 4.00 GB of main memory running under the Windows Vista operating 

system.  

 To validate the two-phase algorithm two groups of datasets were used, the Erdos 

graphs and some clique DIMACS [7] benchmark instances. In Erdos graphs each 

node corresponds to a researcher, and two nodes are adjacent if the researchers 

published together. The graphs are named “ERDOS-x-y”, where “x” represents the 

last two digits of the year that the graphs was create, and “y” the maximum distance 

from Erdos to each vertex in the graph. The second group of graphs contains some 

clique instances from the second DIMACS challenge. These include the “brock” 

graphs, which contain cliques “hidden” within much smaller cliques, getting hard to 

discover cliques in these graphs. The “c-fat” graphs are a result of fault diagnosis 

data. 

 

Table 1. Sequence of k-clique cover 

 

cardinality of the k-clique cover 
graph  nr 

nodes 

longest 

path 
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=9 k=18 k=40 

Test 18 6 7 4 3 2 2 1  --  --  --  -- 

Erdos-97-1 472 6 9 8 7 7 4 1  --  --  --  -- 

Erdos-98-1 485 7 8 8 7 5 1 1 1  --  --  -- 

Erdos-99-1 492 7 8 8 7 7 1 1 1  --  --  -- 

brock200_1 200 2 24 1  --  --  --  --  --  --  --  -- 

brock200_2 200 2 26 1  --  --  --  --  --  --  --  -- 

brock400_1 400 2 26 1  --  --  --  --  --  --  --  -- 

brock400_2 400 2 23 1  --  --  --  --  --  --  --  -- 

c-fat200-1 200 18 16 11 9 8 7 7 6 5 1  -- 

c-fat200-2 200 9 9 7 5 4 3 3 3 1  --  -- 

c-fat500-1 500 40 16 12 9 7 7 6 6 4 3 1 

 

 In this paper we propose a graph mining measure based on k-cliques, to 

understand the structure of the graph better, by combining small worlds with the 

cohesive subgroup analysis. The measure for small worlds can be obtained using the 
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diameter of the graph, i.e. the longest shortest path in the graph, as already stated. For 

the cohesive subgroups study, we use the concept of k-clique.  

 For the analysis of each graph, we consider the number of nodes, the longest path, 

the average path and the cardinality of the set of k-cliques that cover all the nodes, 

varying k from 1 to the longest path. 

 The “test” graph with 18 nodes, has the longest path equal to 6. To cover the graph 

seven 1-clique are needed, or four 2-cliques are needed, and so on, until one 6-clique 

is needed. Figure 7 shows the 3-clique cover.  

 For the Erdos-98-1 and Erdos-99-1, with the longest path of 7, the graphs are 

covered with only one 5-clique. These values exemplify the difference between k-

cliques and k-clans, these graphs are 5-cliques but not 5-clans because the diameter is 

equal to seven. 

 The “brock” graphs, known as hiding cliques, have a short longest path, equal to 

2, and to cover the graph one 2-clique is enough. Most of the DIMACS instances 

present this profile. On the other hand, the “c-fat” graphs, have the shortest path larger 

than 7, generating long sequences of k-clique cover. 

 In the proposed measure, the sequence of k-clique covers, identifies families of 

graphs, and seems to be very promising. 

 

 

 

 

 

 

 

Fig. 7.  Three 3-clique are needed to cover the Test graph 

5. Conclusions 

The popular saying that establishes that "to be right is not enough, someone needs to 

say you are right" agrees with the relevance of social networks in the area of artificial 

intelligence. The model of artificial intelligence focused on a single entity tends to 

soon become soon outdated. On the other hand, models based on the agents’ 

interaction are emerging, strengthening the concept of social networks. 
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 Given the large amount of data, provided by the Web 2.0, there is a pressing need 

to obtain new measures to better understand the networks’ structure; how their 

components are organized and the way they evolve over time. 

 Complex network measures are essentially based on low complexity 

computational procedures like the diameter of the graph, the degree distribution of the 

nodes and connectivity checking, while underestimating the knowledge of the graph 

structure components.  

 In this paper the concept of relaxed clique is extended to the whole the graph, to 

achieve a general view, by covering the network with k-cliques.  The sequence of k-

clique covers is presented, combining small world concept with community structure 

components. The analysis of the sequences shows that different graph families have 

different structures. 

 Additional, non-mentioned features in this paper, like the over-covered nodes, the 

k-cliques cardinality and the k-clique composition can be obtained.  

 Social networks do not exceed a hundred nodes. In this work the proposed two-

phase algorithm deals with graphs with hundreds of nodes, with a running time 

performance of a few seconds. In future work, we would like to extend this approach 

to larger datasets, with thousands of nodes. 
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