1,652 research outputs found

    The influence of D-branes' backreaction upon gravitational interactions between open strings

    Full text link
    We argue that gravitational interactions between open strings ending on D3-branes are largely shaped by the D3-branes' backreaction. To this end we consider classical open strings coupled to general relativity in Poincare AdS5 backgrounds. We compute the linear gravitational backreaction of a static string extending up to the Poincare horizon, and deduce the potential energy between two such strings. If spacetime is non-compact, we find that the gravitational potential energy between parallel open strings is independent of the strings' inertial masses and goes like 1/r at large distance r. If the space transverse to the D3-branes is suitably compactified, a collective mode of the graviton propagates usual four-dimensional gravity. In that case the backreaction of the D3-branes induces a correction to the Newtonian potential energy that violates the equivalence principle. The observed enhancement of the gravitational attraction is specific to string theory; there is no similar effect for point-particles.Comment: 28 pages, 7 figures. Typos corrected, minor addition

    Selective serotonin reuptake inhibitors in the treatment of generalized anxiety disorder

    Get PDF
    Selective serotonin reuptake inhibitors have proven efficacy in the treatment of panic disorder, obsessive–compulsive disorder, post-traumatic stress disorder and social anxiety disorder. Accumulating data shows that selective serotonin reuptake inhibitor treatment can also be efficacious in patients with generalized anxiety disorder. This review summarizes the findings of randomized controlled trials of selective serotonin reuptake inhibitor treatment for generalized anxiety disorder, examines the strengths and weaknesses of other therapeutic approaches and considers potential new treatments for patients with this chronic and disabling anxiety disorder

    Geometry of open strings ending on backreacting D3-branes

    Full text link
    We investigate open string theory on backreacting D3-branes using a spacetime approach. We study in detail the half-BPS supergravity solutions describing open strings ending on D3-branes, in the near horizon of the D3-branes. We recover quantitatively several non-trivial features of open string physics including the appearance of D3-brane spikes, the polarization of fundamental strings into D5-branes, and the Hanany-Witten effect. Finally we detail the computation of the gravitational potential between two open strings, and contrast it with the holographic computation of Wilson lines. We argue that the D-brane backreaction has a large influence on the low-energy gravity, which may lead to experimental tests for string theory brane-world scenarios.Comment: 64 pages, 20 figure

    Rupture by damage accumulation in rocks

    Get PDF
    The deformation of rocks is associated with microcracks nucleation and propagation, i.e. damage. The accumulation of damage and its spatial localization lead to the creation of a macroscale discontinuity, so-called "fault" in geological terms, and to the failure of the material, i.e. a dramatic decrease of the mechanical properties as strength and modulus. The damage process can be studied both statically by direct observation of thin sections and dynamically by recording acoustic waves emitted by crack propagation (acoustic emission). Here we first review such observations concerning geological objects over scales ranging from the laboratory sample scale (dm) to seismically active faults (km), including cliffs and rock masses (Dm, hm). These observations reveal complex patterns in both space (fractal properties of damage structures as roughness and gouge), time (clustering, particular trends when the failure approaches) and energy domains (power-law distributions of energy release bursts). We use a numerical model based on progressive damage within an elastic interaction framework which allows us to simulate these observations. This study shows that the failure in rocks can be the result of damage accumulation

    A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite

    Full text link
    The study of radiation effects in solids is important for the development of 'radiation-resistant' materials for fission-reactor applications'. The effects of heavy-ion irradiation in the isostructural orthosilicates zircon (ZrSiO4), hafnon (HfSiO4) and thorite (ThSiO4) are particularly important because these minerals are under active investigation for use as a waste form for plutonium-239 resulting from the dismantling of nuclear weapons(2-4). During ion irradiation, localized 'cascades' of displaced atoms can form as a result of ballistic collisions in the target material, and the temperature inside these regions may for a short time exceed the bulk melting temperature. Whether these cascades do indeed generate a localized liquid state(5-8) has, however, remained unclear. Here we investigate the irradiation-induced decomposition of zircon and hafnon, and find evidence for formation of a liquidlike state in the displacement cascades. Our results explain the frequent occurrence of ZrO2 in natural amorphous zircong(9-12) Moreover, we conclude that zircon-based nuclear waste forms should be maintained within strict temperature Limits, to avoid potentially detrimental irradiation-induced amorphization or phase decomposition of the zircon.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62853/1/395056a0.pd

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin

    Get PDF
    Epicardial epithelial-mesenchymal transition (EMT) is hypothesized to generate cardiovascular progenitor cells that differentiate into various cell types, including coronary smooth muscle and endothelial cells, perivascular and cardiac interstitial fibroblasts and cardiomyocytes. Here we show that an epicardial-specific knockout of Wt1 leads to a reduction of mesenchymal progenitor cells and their derivatives. We demonstrate that Wt1 is essential for repression of the epithelial phenotype in epicardial cells and during Embryonic Stem (ES) cell differentiation, through direct transcriptional regulation of Snail (Snai1) and E-cadherin (Cdh1), two of the major mediators of EMT. Some mesodermal lineages fail to form in Wt1 null embryoid bodies but this effect is rescued by the expression of Snai1, underlining the importance of EMT in generating these differentiated cells. These new insights into the molecular mechanisms regulating cardiovascular progenitor cells and EMT will shed light on the pathogenesis of heart diseases and may help the development of cell based therapies

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    Antitumor activity and mechanisms of action of total glycosides from aerial part of Cimicifuga dahurica targeted against hepatoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medicinal plant is a main source of cancer drug development. Some of the cycloartane triterpenoids isolated from the aerial part of <it>Cimicifuga dahurica </it>showed cytotoxicity in several cancer cell lines. It is of great interest to examine the antiproliferative activity and mechanisms of total triterpenoid glycosides of <it>C. dahurica </it>and therefore might eventually be useful in the prevention or treatment of Hepatoma.</p> <p>Methods</p> <p>The total glycosides from the aerial part (TGA) was extracted and its cytotoxicity was evaluated in HepG2 cells and primary cultured normal mouse hepatocytes by an MTT assay. Morphology observation, Annexin V-FITC/PI staining, cell cycle analysis and western blot were used to further elucidate the cytotoxic mechanism of TGA. Implanted mouse H<sub>22 </sub>hepatoma model was used to demonstrate the tumor growth inhibitory activity of TGA <it>in vivo</it>.</p> <p>Results</p> <p>The IC<sub>50 </sub>values of TGA in HepG2 and primary cultured normal mouse hepatocytes were 21 and 105 ÎŒg/ml, respectively. TGA induced G<sub>0</sub>/G<sub>1 </sub>cell cycle arrest at lower concentration (25 ÎŒg/ml), and triggered G<sub>2</sub>/M arrest and apoptosis at higher concentrations (50 and 100 ÎŒg/ml respectively). An increase in the ratio of Bax/Bcl-2 was implicated in TGA-induced apoptosis. In addition, TGA inhibited the growth of the implanted mouse H<sub>22 </sub>tumor in a dose-dependent manner.</p> <p>Conclusion</p> <p>TGA may potentially find use as a new therapy for the treatment of hepatoma.</p
    • 

    corecore