We argue that gravitational interactions between open strings ending on
D3-branes are largely shaped by the D3-branes' backreaction. To this end we
consider classical open strings coupled to general relativity in Poincare AdS5
backgrounds. We compute the linear gravitational backreaction of a static
string extending up to the Poincare horizon, and deduce the potential energy
between two such strings. If spacetime is non-compact, we find that the
gravitational potential energy between parallel open strings is independent of
the strings' inertial masses and goes like 1/r at large distance r. If the
space transverse to the D3-branes is suitably compactified, a collective mode
of the graviton propagates usual four-dimensional gravity. In that case the
backreaction of the D3-branes induces a correction to the Newtonian potential
energy that violates the equivalence principle. The observed enhancement of the
gravitational attraction is specific to string theory; there is no similar
effect for point-particles.Comment: 28 pages, 7 figures. Typos corrected, minor addition