1,519 research outputs found

    Selective vulnerability of neurons to acute toxicity after proteasome inhibitor treatment: Implications for oxidative stress and insolubility of newly synthesized proteins

    Get PDF
    Maintaining protein homeostasis is vital to cell viability, with numerous studies demonstrating a role for proteasome inhibition occurring during the aging of a variety of tissues and, presumably, contributing to the disruption of cellular homeostasis during aging. In this study we sought to elucidate the differences between neurons and astrocytes in regard to basal levels of protein synthesis, proteasome-mediated protein degradation, and sensitivity to cytotoxicity after proteasome inhibitor treatment. In these studies we demonstrate that neurons have an increased vulnerability, compared to astrocyte cultures, to proteasome-inhibitor-induced cytotoxicity. No significant difference was observed between these two cell types in regard to the basal rates of protein synthesis, or basal rates of protein degradation, in the pool of short-lived proteins. After proteasome inhibitor treatment neuronal crude lysates were observed to undergo greater increases in the levels of ubiquitinated and oxidized proteins and selectively exhibited increased levels of newly synthesized proteins accumulating within the insoluble protein pool, compared to astrocytes. Together, these data suggest a role for increased oxidized proteins and sequestration of newly synthesized proteins in the insoluble protein pool, as potential mediators of the selective neurotoxicity after proteasome inhibitor treatment. The implications for neurons exhibiting increased sensitivity to acute proteasome inhibitor exposure, and the corresponding changes in protein homeostasis observed after proteasome inhibition, are discussed in the context of both aging and age-related disorders of the nervous system.Fil: Dasuri, Kalavathi. State University of Louisiana; Estados UnidosFil: Ebenezer, Philip J.. State University of Louisiana; Estados UnidosFil: Zhang, Le. State University of Louisiana; Estados UnidosFil: Fernandez Kim, Sun Ok. State University of Louisiana; Estados UnidosFil: Uranga, Romina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Gavilán, Elena. State University of Louisiana; Estados UnidosFil: Di Blasio, Alessia. State University of Louisiana; Estados UnidosFil: Keller, Jeffrey N.. State University of Louisiana; Estados Unido

    Amino acid analog toxicity in primary rat neuronal and astrocyte cultures: Implications for protein misfolding and TDP-43 regulation

    Get PDF
    Amino acid analogs promote translational errors that result in aberrant protein synthesis, and have been used to understand the effects of protein misfolding in a variety of physiological and pathological settings. TDP-43 is a protein that is linked to protein aggregation and toxicity in a variety of neurodegenerative diseases. In this study we exposed primary rat neurons and astrocyte cultures to established amino acid analogs (Canavanine and Azetidine-2-carboxylic acid), and observed both cell types undergo a dose-dependent increase in toxicity, with neurons exhibiting a greater degree of toxicity as compared to astrocytes. Neurons and astrocytes exhibited similar increases in ubiquitinated and oxidized protein following analog treatment. Analog treatment increased Heat shock protein (Hsp) levels in both neurons and astrocytes. In neurons, and to a lesser extent astrocytes, the levels of TDP-43 increased in response to analog treatment. Taken together, these data indicate that neurons exhibit preferential toxicity and alterations in TDP-43, in response to increased protein misfolding, as compared to astrocytes.Fil: Dasuri, Kalavathi. State University Of Louisiana; Estados UnidosFil: Ebenezer, Philip J.. State University Of Louisiana; Estados UnidosFil: Uranga, Romina Maria. Consejo Nacional de Investigaciones Cientificas y Técnicas. Centro Científico Tecnológico Bahia Blanca. Instituto de Investigaciones Bioquímicas Bahia Blanca (i); Argentina. Universidad Nacional del Sur; ArgentinaFil: Gavilan, Elena. Universidad de Sevilla; EspañaFil: Zhang, Le. State University Of Louisiana; Estados UnidosFil: Fernandez-Kim, Sun O. K.. State University Of Louisiana; Estados UnidosFil: Bruce Keller, Annadora J.. State University Of Louisiana; Estados UnidosFil: Keller, Jeffrey N.. State University Of Louisiana; Estados Unido

    Mode transitions in a model reaction-diffusion system driven by domain growth and noise

    Get PDF
    Pattern formation in many biological systems takes place during growth of the underlying domain. We study a specific example of a reaction–diffusion (Turing) model in which peak splitting, driven by domain growth, generates a sequence of patterns. We have previously shown that the pattern sequences which are presented when the domain growth rate is sufficiently rapid exhibit a mode-doubling phenomenon. Such pattern sequences afford reliable selection of certain final patterns, thus addressing the robustness problem inherent of the Turing mechanism. At slower domain growth rates this regular mode doubling breaks down in the presence of small perturbations to the dynamics. In this paper we examine the breaking down of the mode doubling sequence and consider the implications of this behaviour in increasing the range of reliably selectable final patterns

    Deposition of Macromolecular Structures

    Full text link

    The Spitzer c2d Survey of Weak-Line T Tauri Stars. III. The Transition from Primordial Disks to Debris Disks

    Get PDF
    We present 3.6 to 70 {\mu}m Spitzer photometry of 154 weak-line T Tauri stars (WTTS) in the Chamaeleon, Lupus, Ophiuchus and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars (CTTS) which are located in the same star forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 {\mu}m) and the 24 {\mu}m MIPS band. In the 70 {\mu}m MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTS survey in the mid to far infrared to date, and reveal the frequency of outer disks (r = 3-50 AU) around WTTS. The 70 {\mu}m photometry for half the c2d WTTS sample (the on-cloud objects), which were not included in the earlier papers in this series, Padgett et al. (2006) and Cieza et al. (2007), are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTS, but just 5% for off- cloud WTTS, similar to the value reported in the earlier works. WTTS exhibit spectral energy distributions (SEDs) that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than Ldisk/L* = 2 x 10^-3 in 2 Myr, and more tenuous than Ldisk/L* = 5 x 10^-4 in 4 Myr.Comment: 40 pages, 13 figures, 4 tables. Accepted for publication in ApJ on September 20, 201

    Mitogen-induced lymphocyte proliferation in loggerhead sea turtles: comparison of methods and effects of gender, plasma testosterone concentration, and body condition on immunity.” Vet

    Get PDF
    Abstract A fully functioning immune system is vital to the survival of threatened and endangered sea turtles. Immunological protection against diseases in any organism can be reduced by a number of natural and anthropogenic factors, such as seasonal changes, malnutrition, disease states, and contaminant exposure. These factors are even more critical when they occur in endangered species or populations. To identify alterations in the immunological health of loggerhead sea turtles (Caretta caretta), the mitogen-induced lymphocyte proliferation (LP) assay was developed using peripheral blood leukocytes (PBLs). Collection and culture conditions were optimized for this assay using non-lethal blood samples collected from free-ranging turtles along the southeastern US coast. During the collection, two anticoagulants (sodium heparin and lithium heparin) were compared to determine effects of different ions on assay results. Optimal culture conditions were established for loggerhead PBLs while two different methods of measuring LP were compared: (1) the traditional radioactive heparin type did not influence the results of the LP assay. Lastly, using these optimized methods, we investigated the effect of gender, plasma testosterone concentration, and body condition on LP in loggerhead turtles and found that none of the parameters largely influenced LP.

    Hidden Charge Order in an Iron Oxide Square-Lattice Compound

    Get PDF
    Since the discovery of charge disproportionation in the FeO2 square-lattice compound Sr3Fe2O7 by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained “hidden” to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO2 planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on “hidden order” in other materials

    In vivo regulation of interleukin 1β in patients with cryopyrin-associated periodic syndromes

    Get PDF
    The investigation of interleukin 1β (IL-1β) in human inflammatory diseases is hampered by the fact that it is virtually undetectable in human plasma. We demonstrate that by administering the anti–human IL-1β antibody canakinumab (ACZ885) to humans, the resulting formation of IL-1β–antibody complexes allowed the detection of in vivo–produced IL-1β. A two-compartment mathematical model was generated that predicted a constitutive production rate of 6 ng/d IL-1β in healthy subjects. In contrast, patients with cryopyrin-associated periodic syndromes (CAPS), a rare monogenetic disease driven by uncontrolled caspase-1 activity and IL-1 production, produced a mean of 31 ng/d. Treatment with canakinumab not only induced long-lasting complete clinical response but also reduced the production rate of IL-1β to normal levels within 8 wk of treatment, suggesting that IL-1β production in these patients was mainly IL-1β driven. The model further indicated that IL-1β is the only cytokine driving disease severity and duration of response to canakinumab. A correction for natural IL-1 antagonists was not required to fit the data. Together, the study allowed new insights into the production and regulation of IL-1β in man. It also indicated that CAPS is entirely mediated by IL-1β and that canakinumab treatment restores physiological IL-1β production
    corecore