20 research outputs found

    Identification of kidney injury released circulating osteopontin as causal agent of respiratory failure

    Get PDF
    Tissue injury can drive secondary organ injury; however, mechanisms and mediators are not well understood. To identify interorgan cross-talk mediators, we used acute kidney injury (AKI)-induced acute lung injury (ALI) as a clinically important example. Using kidney and lung single-cell RNA sequencing after AKI in mice followed by ligand-receptor pairing analysis across organs, kidney ligands to lung receptors, we identify kidney-released circulating osteopontin (OPN) as a novel AKI-ALI mediator. OPN release from kidney tubule cells triggered lung endothelial leakage, inflammation, and respiratory failure. Pharmacological or genetic OPN inhibition prevented AKI-ALI. Transplantation of ischemi

    Further clinical and molecular delineation of the 15q24 microdeletion syndrome

    Get PDF
    Background Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis. Aim To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients. Methods Breakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient. Results Nine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8-10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome. Conclusion The molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1-Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screenin

    PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features.

    Get PDF
    PUF60 encodes a nucleic acid-binding protein, a component of multimeric complexes regulating RNA splicing and transcription. In 2013, patients with microdeletions of chromosome 8q24.3 including PUF60 were found to have developmental delay, microcephaly, craniofacial, renal and cardiac defects. Very similar phenotypes have been described in six patients with variants in PUF60, suggesting that it underlies the syndrome. We report 12 additional patients with PUF60 variants who were ascertained using exome sequencing: six through the Deciphering Developmental Disorders Study and six through similar projects. Detailed phenotypic analysis of all patients was undertaken. All 12 patients had de novo heterozygous PUF60 variants on exome analysis, each confirmed by Sanger sequencing: four frameshift variants resulting in premature stop codons, three missense variants that clustered within the RNA recognition motif of PUF60 and five essential splice-site (ESS) variant. Analysis of cDNA from a fibroblast cell line derived from one of the patients with an ESS variants revealed aberrant splicing. The consistent feature was developmental delay and most patients had short stature. The phenotypic variability was striking; however, we observed similarities including spinal segmentation anomalies, congenital heart disease, ocular colobomata, hand anomalies and (in two patients) unilateral renal agenesis/horseshoe kidney. Characteristic facial features included micrognathia, a thin upper lip and long philtrum, narrow almond-shaped palpebral fissures, synophrys, flared eyebrows and facial hypertrichosis. Heterozygote loss-of-function variants in PUF60 cause a phenotype comprising growth/developmental delay and craniofacial, cardiac, renal, ocular and spinal anomalies, adding to disorders of human development resulting from aberrant RNA processing/spliceosomal function

    Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia?

    Get PDF
    Schimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder caused by biallelic mutations in the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1) gene. Changes in gene expression underlie the arteriosclerosis and T-cell immunodeficiency of SIOD; therefore, we hypothesized that SMARCAL1 deficiency causes the focal segmental glomerulosclerosis (FSGS) of SIOD by altering renal gene expression. We tested this hypothesis by gene expression analysis of an SIOD patient kidney and verified these findings through immunofluorescent analysis in additional SIOD patients and a genetic interaction analysis in Drosophila.status: publishe

    Increased Wnt and Notch signaling: a clue to the renal disease in Schimke immuno-osseous dysplasia?

    Get PDF
    Background: Schimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder caused by biallelic mutations in the SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1) gene. Changes in gene expression underlie the arteriosclerosis and T-cell immunodeficiency of SIOD; therefore, we hypothesized that SMARCAL1 deficiency causes the focal segmental glomerulosclerosis (FSGS) of SIOD by altering renal gene expression. We tested this hypothesis by gene expression analysis of an SIOD patient kidney and verified these findings through immunofluorescent analysis in additional SIOD patients and a genetic interaction analysis in Drosophila. Results: We found increased expression of components and targets of the Wnt and Notch signaling pathways in the SIOD patient kidney, increased levels of unphosphorylated β-catenin and Notch1 intracellular domain in the glomeruli of most SIOD patient kidneys, and genetic interaction between the Drosophila SMARCAL1 homologue Marcal1 and genes of the Wnt and Notch signaling pathways. Conclusions: We conclude that increased Wnt and Notch activity result from SMARCAL1 deficiency and, as established causes of FSGS, contribute to the renal disease of most SIOD patients. This further clarifies the pathogenesis of SIOD and will hopefully direct potential therapeutic approaches for SIOD patients.Medicine, Faculty ofOther UBCNon UBCMedical Genetics, Department ofReviewedFacult

    Data_Sheet_1.PDF

    Get PDF
    Aflatoxins (AF) are highly detrimental to human and animal health. We recently demonstrated that the Aspergillus flavus caleosin, AfPXG, had peroxygenase activity and mediated fungal development and AF accumulation. We now report the characterization of an AfPXG-deficient line using reference strain NRRL3357. The resulting fungal phenotype included a severe decrease in mycelium growth, failure to sporulate, and reduced AF production. Increasing cellular oxidative status by administration of hydrogen peroxide and cumene hydroperoxide did not restore the AfPXG-deficient phenotype, which suggests that AfPXG-deficiency is not directly related to oxidative stress. To investigate possible alternative roles of AfPXG, a gain of function approach was used to overexpress AfPXG, with the reporter gene Gfp, in an AfPXG-deficient line, termed AfPXG+. The resulting phenotype included elevated numbers of stable lipid droplets (LDs) plus enhanced AF production. Highly purified LDs from AfPXG+ cultures sequestered AF and this ability was positively correlated with overall LD number. Site-specific mutagenesis of AfPXG to delete Histidine 85 (AfPXGHis85), a residue essential for its catalytic activity, or deletion of the putative LD targeting domain (AfPXGD126-140), showed that AfPXG-peroxygenase activity was required for AF biosynthesis and that integration of AF into LDs was required for their export via a LD-dependent pathway. Ectopic expression in fungal cells of the plant LD-associated protein, oleosin, also resulted in both additional LD accumulation and enhanced AF secretion. These results suggest that both fungal LDs and their associated caleosin proteins are intimately involved in the biosynthesis, trafficking, and secretion of AF
    corecore