353 research outputs found

    Herbal extracts modulate the amplitude and frequency of slow waves in circular smooth muscle of mouse small intestine

    Get PDF
    Background: Herbal preparations like STW 5 (Iberogast(R)) are widely used drugs in the treatment of dyspepsia and motility-related disorders of the gastrointestinal tract. STW 5 is a phytotherapeutic agent consisting of a fixed mixture of 9 individual plant extracts. The electrophysiological mechanisms of action of STW 5 remain obscure. Aim: The aim of the present study was to investigate whether herbal extracts influence electrophysiological parameters of the small intestine. For this purpose, the resting membrane potential (RMP) and the slow wave rhythmicity of smooth muscle cells of mouse small intestine were observed. Methods: Intracellular recordings of smooth muscle cells of the circular muscle layer of mouse small intestine were performed using standard microelectrode techniques. After dissection of the mucosa, the small intestine was placed in an organ bath and a microelectrode was applied on a circular smooth muscle cell. The RMP and the amplitude of slow waves were measured in millivolts. Results: The RMP of smooth muscle cells was - 59 +/- 1.3 mV. This RMP was significantly depolarized by STW 5 ( 9.6 +/- 1.6 mV); the depolarizing effects can be mainly attributed to the constituents of matricariae flos, angelicae radix and chelidonii herba. The basal frequency of small intestinal slow waves was 39.5 +/- 1.4 min(-1) and the amplitude was 23.1 +/- 0.9 mV. STW 5 significantly reduced the amplitude and frequency of the slow waves ( 11.7 +/- 0.8 mV; 33.5 +/- 3.4 min(-1)). This effect on slow waves represents the sum of the effects of the 9 phytoextracts. Whereas angelicae radix and matricariae flos completely blocked slow wave activity, Iberis amara increased the frequency and amplitude, chelidonii herba reduced the frequency and amplitude of the slow waves, mentae piperitae folium reduced the frequency and left amplitude unchanged and liquiritae radix, carvi fructus and melissae folium had no effects. Conclusion: Herbal extracts cause changes in smooth muscle RMP and slow wave rhythmicity, up to reversible abolition, by blockade of large conductance Ca2+ channels and other not yet identified mechanisms. In herbal preparations like STW 5 these effects add up to a total effect and this study indicates that herbal preparations which are widely used in dyspepsia and motility-related disorders have characteristic, reproducible, reversible effects on small intestinal electrophysiology. Copyright (C) 2005 S. Karger AG, Basel

    Chromatic Signals Control Proboscis Movements during Hovering Flight in the Hummingbird Hawkmoth Macroglossum stellatarum

    Get PDF
    Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general

    Designer TGFβ Superfamily Ligands with Diversified Functionality

    Get PDF
    Transforming Growth Factor – beta (TGFβ) superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs), and Bone Morphogenetic Proteins (BMPs), are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer), to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values

    Cavity QED with chip-based toroidal microresonators

    Get PDF
    We report the demonstration of strong coupling between single Cesium atoms and a high-Q chip-based microresonator. Our toroidal microresonators are compact, Si chip-based whispering gallery mode resonators that confine light to small volumes with extremely low losses, and are manufactured in large numbers by standard lithographic techniques. Combined with the capability to couple efficiently light to and from these microresonators by a tapered optical fiber, toroidal microresonators offer a promising avenue towards scalable quantum networks. Experimentally, laser cooled Cs atoms are dropped onto a toroidal microresonator while a probe beam is critically coupled to the cavity mode. When an atom interacts with the cavity, it modifies the resonance spectrum of the cavity, leading to rejection of some of the probe light from the cavity, and thus to an increase in the output power. By observing such transit events while systematically detuning the cavity from the atomic resonance, we determine the maximal accessible single-photon Rabi frequency of Ω0/2π ≈ (100 ± 24) MHz. This value puts our system in the regime of strong coupling, being significantly larger than the dissipation rates in our system

    Imaging Flaws under Insulation Using a Squid Magnetometer

    Get PDF
    Superconducting QUantum Interference Devices (SQUID) are the most sensitive instruments known for the measurement of magnetic fields. An all niobium two-hole homemade SQUID can easily achieve sensitivities of 10-4 Ф0/√Hz (Ф0 = 2.07 × 10-15 Wb). Our complete system has a sensitivity of 50 × 10-15 Tesla √Hz, and more sophisticated systems can reach sensitivities one order of magnitude higher. Due to its high sensitivity, and to the advent of high temperature superconductivity, SQUID systems presents new opportunities for its use in nondestructive evaluation of electrically conducting and ferromagnetic structures, mainly when the area to be inspected is difficult to be reached

    Relative Role of Flower Color and Scent on Pollinator Attraction: Experimental Tests using F1 and F2 Hybrids of Daylily and Nightlily

    Get PDF
    The daylily (Hemerocallis fulva) and nightlily (H. citrina) are typical examples of a butterfly-pollination system and a hawkmoth-pollination system, respectively. H. fulva has diurnal, reddish or orange-colored flowers and is mainly pollinated by diurnal swallowtail butterflies. H. citrina has nocturnal, yellowish flowers with a sweet fragrance and is pollinated by nocturnal hawkmoths. We evaluated the relative roles of flower color and scent on the evolutionary shift from a diurnally flowering ancestor to H. citrina. We conducted a series of experiments that mimic situations in which mutants differing in either flower color, floral scent or both appeared in a diurnally flowering population. An experimental array of 6×6 potted plants, mixed with 24 plants of H. fulva and 12 plants of either F1 or F2 hybrids, were placed in the field, and visitations of swallowtail butterflies and nocturnal hawkmoths were recorded with camcorders. Swallowtail butterflies preferentially visited reddish or orange-colored flowers and hawkmoths preferentially visited yellowish flowers. Neither swallowtail butterflies nor nocturnal hawkmoths showed significant preferences for overall scent emission. Our results suggest that mutations in flower color would be more relevant to the adaptive shift from a diurnally flowering ancestor to H. citrina than that in floral scent

    Colouration in amphibians as a reflection of nutritional status : the case of tree frogs in Costa Rica

    Get PDF
    Colouration has been considered a cue for mating success in many species; ornaments in males often are related to carotenoid mobilization towards feathers and/or skin and can signal general health and nutrition status. However, there are several factors that can also link with status, such as physiological blood parameters and body condition, but there is not substantial evidence which supports the existence of these relationships and interactions in anurans. This study evaluated how body score and blood values interact with colouration in free-range Agalychnis callidryas and Agalychnis annae males. We found significant associations between body condition and plasmatic proteins and haematocrit, as well as between body condition and colour values from the chromaticity diagram. We also demonstrated that there is a significant relation between the glucose and plasmatic protein values that were reflected in the ventral colours of the animals, and haematocrit inversely affected most of those colour values. Significant differences were found between species as well as between populations of A. callidryas, suggesting that despite colour variation, there are also biochemical differences within animals from the same species located in different regions. These data provide information on underlying factors for colouration of male tree frogs in nature, provide insights about the dynamics of several nutrients in the amphibian model and how this could affect the reproductive output of the animals

    Discrimination Training with Multimodal Stimuli Changes Activity in the Mushroom Body of the Hawkmoth Manduca sexta

    Get PDF
    The mushroom bodies of the insect brain play an important role in olfactory processing, associative learning and memory. The mushroom bodies show odor-specific spatial patterns of activity and are also influenced by visual stimuli.Functional imaging was used to investigate changes in the in vivo responses of the mushroom body of the hawkmoth Manduca sexta during multimodal discrimination training. A visual and an odour stimulus were presented either together or individually. Initially, mushroom body activation patterns were identical to the odour stimulus and the multimodal stimulus. After training, however, the mushroom body response to the rewarded multimodal stimulus was significantly lower than the response to the unrewarded unimodal odour stimulus, indicating that the coding of the stimuli had changed as a result of training. The opposite pattern was seen when only the unimodal odour stimulus was rewarded. In this case, the mushroom body was more strongly activated by the multimodal stimuli after training. When no stimuli were rewarded, the mushroom body activity decreased for both the multimodal and unimodal odour stimuli. There was no measurable response to the unimodal visual stimulus in any of the experiments. These results can be explained using a connectionist model where the mushroom body is assumed to be excited by olfactory stimulus components, and suppressed by multimodal configurations.Discrimination training with multimodal stimuli consisting of visual and odour cues leads to stimulus specific changes in the in vivo responses of the mushroom body of the hawkmoth

    A SNAI2-PEAK1-INHBA stromal axis drives progression and lapatinib resistance in HER2-positive breast cancer by supporting subpopulations of tumor cells positive for antiapoptotic and stress signaling markers

    Get PDF
    Intercellular mechanisms by which the stromal microenvironment contributes to solid tumor progression and targeted therapy resistance remain poorly understood, presenting significant clinical hurdles. PEAK1 (Pseudopodium-Enriched Atypical Kinase One) is an actin cytoskeleton- and focal adhesion-associated pseudokinase that promotes cell state plasticity and cancer metastasis by mediating growth factor-integrin signaling crosstalk. Here, we determined that stromal PEAK1 expression predicts poor outcomes in HER2-positive breast cancers high in SNAI2 expression and enriched for MSC content. Specifically, we identified that the fibroblastic stroma in HER2-positive breast cancer patient tissue stains positive for both nuclear SNAI2 and cytoplasmic PEAK1. Furthermore, mesenchymal stem cells (MSCs) and cancer-associated fibroblasts (CAFs) express high PEAK1 protein levels and potentiate tumorigenesis, lapatinib resistance and metastasis of HER2-positive breast cancer cells in a PEAK1-dependent manner. Analysis of PEAK1-dependent secreted factors from MSCs revealed INHBA/activin-A as a necessary factor in the conditioned media of PEAK1-expressing MSCs that promotes lapatinib resistance. Single-cell CycIF analysis of MSC-breast cancer cell co-cultures identified enrichment of p-Akthigh/p-gH2AXlow, MCL1high/p-gH2AXlow and GRP78high/VIMhigh breast cancer cell subpopulations by the presence of PEAK1-expressing MSCs and lapatinib treatment. Bioinformatic analyses on a PEAK1-centric stroma-tumor cell gene set and follow-up immunostaining of co-cultures predict targeting antiapoptotic and stress pathways as a means to improve targeted therapy responses and patient outcomes in HER2-positive breast cancer and other stroma-rich malignancies. These data provide the first evidence that PEAK1 promotes tumorigenic phenotypes through a previously unrecognized SNAI2-PEAK1-INHBA stromal cell axis
    • …
    corecore