2,290 research outputs found

    Multigene analyses identify the three earliest lineages of extant flowering plants

    Get PDF
    AbstractFlowering plants (angiosperms) are by far the largest, most diverse, and most important group of land plants, with over 250,000 species and a dominating presence in most terrestrial ecosystems. Understanding the origin and early diversification of angiosperms has posed a long-standing botanical challenge [1]. Numerous morphological and molecular systematic studies have attempted to reconstruct the early history of this group, including identifying the root of the angiosperm tree. There is considerable disagreement among these studies, with various groups of putatively basal angiosperms from the subclass Magnoliidae having been placed at the root of the angiosperm tree (reviewed in [2–4]). We investigated the early evolution of angiosperms by conducting combined phylogenetic analyses of five genes that represent all three plant genomes from a broad sampling of angiosperms. Amborella, a monotypic, vesselless dioecious shrub from New Caledonia, was clearly identified as the first branch of angiosperm evolution, followed by the Nymphaeales (water lilies), and then a clade of woody vines comprising Schisandraceae and Austrobaileyaceae. These findings are remarkably congruent with those from several concurrent molecular studies [5–7] and have important implications for whether or not the first angiosperms were woody and contained vessels, for interpreting the evolution of other key characteristics of basal angiosperms, and for understanding the timing and pattern of angiosperm origin and diversification

    An Initial Application of a Biopsychosocial Framework to Predict Posttraumatic Stress Following Pediatric Injury

    Get PDF
    Objectives—Each year millions of children suffer from unintentional injuries that result in poor emotional and physical health. This study examined selected biopsychosocial factors (i.e., child heart rate, peritrauma appraisals, early coping, trauma history) to elucidate their roles in promoting emotional recovery following injury. The study evaluated specific hypotheses that threat appraisals (global and trauma-specific) and coping would predict subsequent posttraumatic stress symptoms (PTSS), that coping would mediate the association between early and later PTSS, and that heart rate would predict PTSS and appraisals would mediate this association. Method—Participants were 96 children hospitalized for injury and assessed at 3 time points: T1 (within 2 weeks of injury), T2 (6-week follow-up), and T3 (12-week follow-up). Participants completed measures of trauma history and appraisals at T1, coping at T2, and PTSS at T1, T2, and T3. Heart rate was abstracted from medical records. Structural equation modeling was employed to evaluate study hypotheses. Results—Heart rate was not associated with PTSS or appraisals. Models including trauma history, appraisals, coping, and PTSS were constructed to test other study hypotheses and fit the data well. T1 global and trauma-specific threat appraisals were associated with T1 PTSS; T2 avoidant coping was a significant mediator of the relation between T1 and T3 PTSS. Conclusions—Findings confirm a role for appraisals and coping in the development of PTSS over the weeks following pediatric injury. Early appraisals and avoidant coping may be appropriate targets for prevention and early intervention. Future researchers should further explicate the utility of a biopsychosocial framework in predicting PTSS

    Divergence of duplicated genes by repeated partitioning of splice forms and subcellular localization

    Get PDF
    Gene duplication is a prominent and recurrent process in plant genomes. Among the possible fates of duplicated genes, subfunctionalization refers to duplicates taking on different parts of the function or expression pattern of the ancestral gene. This partitioning could be accompanied by changes in subcellular localization of the protein products. We propose that when alternative splicing of gene products leads to protein products with different subcellular localizations, after gene duplication there will be partitioning of the alternatively spliced forms such that the products of each duplicate are localized to only one of the original locations which we refer to as sub‐localization. We identified the plastid ascorbate peroxidase (cpAPX) genes across angiosperms and analyzed their duplication history, alternative splicing, and subcellular targeting patterns, to identify cases of sub‐localization. We found angiosperms typically have one cpAPX gene that generates both thylakoidal APX (tAPX) and stromal APX (sAPX) through alternative splicing. We identified several independent lineage‐specific sub‐localization cases with specialized paralogs of tAPX and sAPX. We determined that the sub‐localization happened through two types of sequence evolution patterns. Our findings suggest that the divergence through sub‐localization is key to the retention of paralogous cpAPX genes in angiosperms

    Diffraction of complex molecules by structures made of light

    Get PDF
    We demonstrate that structures made of light can be used to coherently control the motion of complex molecules. In particular, we show diffraction of the fullerenes C60 and C70 at a thin grating based on a standing light wave. We prove experimentally that the principles of this effect, well known from atom optics, can be successfully extended to massive and large molecules which are internally in a thermodynamic mixed state and which do not exhibit narrow optical resonances. Our results will be important for the observation of quantum interference with even larger and more complex objects.Comment: 4 pages, 3 figure

    Fluorescent Chemosensors for Toxic Organophosphorus Pesticides: A Review

    Get PDF
    Many organophosphorus (OP) based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S) functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O) organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction. © 2010 by the authors; licensee MPDI, Basel, Switzerland

    Genetic diversity of Mycobacterium tuberculosis isolated from tuberculosis patients in the Serengeti ecosystem in Tanzania

    Get PDF
    SummaryThis study was part of a larger cross-sectional survey that was evaluating tuberculosis (TB) infection in humans, livestock and wildlife in the Serengeti ecosystem in Tanzania. The study aimed at evaluating the genetic diversity of Mycobacterium tuberculosis isolates from TB patients attending health facilities in the Serengeti ecosystem. DNA was extracted from 214 sputum cultures obtained from consecutively enrolled newly diagnosed untreated TB patients aged ≄18 years. Spacer oligonucleotide typing (spoligotyping) and Mycobacterium Interspersed Repetitive Units and Variable Number Tandem Repeat (MIRU-VNTR) were used to genotype M. tuberculosis to establish the circulating lineages. Of the214 M. tuberculosis isolates genotyped, 55 (25.7%) belonged to the Central Asian (CAS) family, 52 (24.3%) were T family (an ill-defined family), 38 (17.8%) belonged to the Latin American Mediterranean (LAM) family, 25 (11.7%) to the East-African Indian (EAI) family, 25 (11.7%) comprised of different unassigned (‘Serengeti’) strain families, while 8 (3.7%) belonged to the Beijing family. A minority group that included Haarlem, X, U and S altogether accounted for 11 (5.2%) of all genotypes. MIRU-VNTR typing produced diverse patterns within and between families indicative of unlinked transmission chains. We conclude that, in the Serengeti ecosystem only a few successful families predominate namely CAS, T, LAM and EAI families. Other types found in lower prevalence are Beijing, Haarlem, X, S and MANU. The Haarlem, EAI_Somalia, LAM3 and S/convergent and X2 subfamilies found in this study were not reported in previous studies in Tanzania

    High resolution amplitude and phase gratings in atom optics

    Full text link
    An atom-field geometry is chosen in which an atomic beam traverses a field interaction zone consisting of three fields, one having frequency Ω=c/λ\Omega =c/\lambda propagating in the z^\hat{z} direction and the other two having frequencies Ω+ÎŽ1\Omega +\delta_{1} and Ω+ÎŽ2\Omega +\delta_{2} propagating in the -z^\hat{z} direction. For n1ÎŽ1+n2ÎŽ2=0n_{1}\delta_{1}+n_{2}\delta_{2}=0 and ∣Ύ1∣T,∣Ύ2∣T≫1|\delta_{1}| T,|\delta_{2}| T\gg 1, where n1n_{1} and n2n_{2} are positive integers and TT is the pulse duration in the atomic rest frame, the atom-field interaction results in the creation of atom amplitude and phase gratings having period λ/[2(n1+n2)]% \lambda /[2(n_{1}+n_{2})]. In this manner, one can use optical fields having wavelength λ\lambda to produce atom gratings having periodicity much less than λ\lambda .Comment: 11 pages, 14 figure
    • 

    corecore