666 research outputs found

    Current Research Information Systems (CRIS): Past, Present and Future

    Get PDF
    publishedVersio

    EPOS: A Novel Use of CERIF for Data-intensive Science

    Get PDF
    AbstractOne of the key aspects of the approaching data-intensive science era is integration of data through interoperability of systems providing data products or visualization and processing services. Far from being simple, interoperability requires robust and scalable e-infrastructures capable of supporting it. In this work we present the case of EPOS, a plan for data integration in the field of Earth Sciences. We describe the design of its e-infrastructure and show its main characteristics. One of the main elements enabling the system to integrate data, data products and services is the metadata catalogue based on the CERIF metadata model. Such a model, modified to fit into the general e-infrastructure design, is part of a three-layer metadata architecture. CERIF guarantees a robust handling of metadata, which is in this case the key to the interoperability and to one of the feature of the EPOS system: the possibility of carrying on data intensive science orchestrating the distributed resources made available by EPOS data providers and stakeholders

    Quantitative spectroscopy of extreme helium stars - Model atmospheres and a non-LTE abundance analysis of BD+10^\circ2179?

    Get PDF
    Extreme helium stars (EHe stars) are hydrogen-deficient supergiants of spectral type A and B. They are believed to result from mergers in double degenerate systems. In this paper we present a detailed quantitative non-LTE spectral analysis for BD+10^\circ2179, a prototype of this rare class of stars, using UVES and FEROS spectra covering the range from \sim3100 to 10 000 {\AA}. Atmosphere model computations were improved in two ways. First, since the UV metal line blanketing has a strong impact on the temperature-density stratification, we used the Atlas12 code. Additionally, We tested Atlas12 against the benchmark code Sterne3, and found only small differences in the temperature and density stratifications, and good agreement with the spectral energy distributions. Second, 12 chemical species were treated in non-LTE. Pronounced non-LTE effects occur in individual spectral lines but, for the majority, the effects are moderate to small. The spectroscopic parameters give TeffT_\mathrm{eff} = 17 300±\pm300 K and logg\log g = 2.80±\pm0.10, and an evolutionary mass of 0.55±\pm0.05 MM_\odot. The star is thus slightly hotter, more compact and less massive than found in previous studies. The kinematic properties imply a thick-disk membership, which is consistent with the metallicity [[Fe/H]1]\approx-1 and α\alpha-enhancement. The refined light-element abundances are consistent with the white dwarf merger scenario. We further discuss the observed helium spectrum in an appendix, detecting dipole-allowed transitions from about 150 multiplets plus the most comprehensive set of known/predicted isolated forbidden components to date. Moreover, a so far unreported series of pronounced forbidden He I components is detected in the optical-UV.Comment: Accepted for publication in MNRAS, 26 pages, 19 Figure

    From open data to data-intensive science through CERIF

    Get PDF
    OGD (Open Government Data) is provided from government departments for transparency and to stimulate a market in ICT services for industry and citizens. Research datasets from publicly funded research commonly are associated with the open scholarly publications movement. However, the former world commonly is derived from the latter with generalisation and summarisation. There is advantage in a user of OGD being able to ‘drill down’ to the underlying research datasets. OGD encourages cross-domain research because the summarized data from different domains is more easily relatable. Bridging across the two worlds requires rich metadata; CERIF (Common European research Information Format) has proved itself to be ideally suited to this requirement. Utilising the research datasets is data-intensive science, a component of e-Research. Data-intensive science also requires access to an e-infrastructure. Virtualisation of this e-infrastructure optimizes this

    Limitations in Predicting the Space Radiation Health Risk for Exploration Astronauts

    Get PDF
    Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.Comment: Accepted for publication by Nature Microgravity (2018

    The EPOS multi-disciplinary Data Portal for integrated access to solid Earth science datasets

    Get PDF
    The European Plate Observing System (EPOS) is a long-term initiative aimed at integrating research infrastructures for solid Earth science in Europe. EPOS provides a sustainable, multidisciplinary user-oriented platform - the EPOS Data Portal - that facilitates data integration, access, use, and re-use, while adhering to the FAIR principles. The paper describes the key governance, community building, and technical aspects for achieving multidisciplinary data integration through the portal. It also outlines the key portal features for aggregating approximately 250 data sources from more than ten different scientific communities. The main architectural concepts underpinning the portal, namely the rich-metadata, the service-driven data provision, and the usage of semantics, are outlined. The paper discusses the challenges encountered during the creation of the portal, describes the community engagement process, and highlights the benefits to the scientific community and society. Future work includes expanding portal functionalities to include data analysis, processing, and visualization and releasing the portal as an open-source software package.publishedVersio
    corecore