12 research outputs found

    Neural processing of moral violations among incarcerated adolescents with psychopathic traits

    Get PDF
    Neuroimaging studies have found that adult male psychopaths show reduced engagement of limbic and paralimbic circuitry while making moral judgments. The goal of this study was to investigate whether these findings extend to adolescent males with psychopathic traits. Functional MRI was used to record hemodynamic activity in 111 incarcerated male adolescents while they viewed unpleasant pictures that did or did not depict moral transgressions and rated each on “moral violation severity”. Adolescents were assessed for psychopathic traits using the Psychopathy Checklist-Youth Version (PCL-YV), Kiddie Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version (KSADS-PL) Conduct Disorder supplement, and Inventory of Callous and Unemotional Traits-Youth Version (ICU-Y). While viewing pictures depicting moral transgressions, CD scores were negatively correlated with hemodynamic responses in the anterior temporal cortex. Adolescents scoring low on the ICU-Y showed a positive correlation between right amygdala responses and severity of violation ratings; those with high ICU-Y scores showed a negative correlation. While viewing unpleasant pictures with and without moral transgressions, PCL-YV scores were negatively correlated with hemodynamic responses in the left amygdala. Overall, the results are consistent with those previously found in adult male psychopaths, but vary depending on the type of psychopathy assessment

    The neural processing of moral sensitivity to issues of justice and care.

    Get PDF
    The empirical and theoretical consideration of ethical decision making has focused on the process of moral judgment; however, a precondition to judgment is moral sensitivity, the ability to detect and evaluate moral issues [Rest, J. R. (1984). The major components of morality. In W. Kurtines & J. Gewirtz (Eds.), Morality, moral behaviour, and moral development (pp. 24–38). New York, NY: Wiley]. Using functional magnetic resonance imaging (fMRI) and contextually standardized, real life moral issues, we demonstrate that sensitivity to moral issues is associated with activation of the polar medial prefrontal cortex, dorsal posterior cingulate cortex, and posterior superior temporal sulcus (STS). These activations suggest that moral sensitivity is related to access to knowledge unique to one\u27s self, supported by autobiographical memory retrieval and social perspective taking. We also assessed whether sensitivity to rule-based or “justice” moral issues versus social situational or “care” moral issues is associated with dissociable neural processing events. Sensitivity to justice issues was associated with greater activation of the left intraparietal sulcus, whereas sensitivity to care issues was associated with greater activation of the ventral posterior cingulate cortex, ventromedial and dorsolateral prefrontal cortex, and thalamus. These results suggest a role for access to self histories and identities and social perspectives in sensitivity to moral issues, provide neural representations of the subcomponent process of moral sensitivity originally proposed by Rest, and support differing neural information processing for the interpretive recognition of justice and care moral issues

    Age of gray matters: Neuroprediction of recidivism

    No full text
    Age is one of the best predictors of antisocial behavior. Risk models of recidivism often combine chronological age with demographic, social and psychological features to aid in judicial decision-making. Here we use independent component analyses (ICA) and machine learning techniques to demonstrate the utility of using brain-based measures of cerebral aging to predict recidivism. First, we developed a brain-age model that predicts chronological age based on structural MRI data from incarcerated males (n = 1332). We then test the model's ability to predict recidivism in a new sample of offenders with longitudinal outcome data (n = 93). Consistent with hypotheses, inclusion of brain-age measures of the inferior frontal cortex and anterior-medial temporal lobes (i.e., amygdala) improved prediction models when compared with models using chronological age; and models that combined psychological, behavioral, and neuroimaging measures provided the most robust prediction of recidivism. These results verify the utility of brain measures in predicting future behavior, and suggest that brain-based data may more precisely account for important variation when compared with traditional proxy measures such as chronological age. This work also identifies new brain systems that contribute to recidivism which has clinical implications for treatment development. Keywords: Neuroprediction, Age, Recidivism, Antisocial, MR

    The structural brain correlates of callous-unemotional traits in incarcerated male adolescents

    No full text
    Youth with severe conduct problems impose a significant cost on society by engaging in high levels of antisocial and aggressive behavior. Within this group, adolescents with high levels of callous- unemotional traits have been found to exhibit more severe and persistent patterns of antisocial behavior than youth with severe conduct problems but normative levels of callous-unemotional traits. Existing neuroimaging studies, along with theoretical accounts of psychopathology, suggest that dysfunction within the paralimbic cortex and limbic system may underlie elevated levels of callous-unemotional traits. The present study examines this hypothesis by investigating gray matter correlates associated with callous-unemotional traits. A sample of incarcerated male adolescents (N = 269), were assessed using voxel-based morphometry. Callous-unemotional traits were assessed using the Inventory of Callous-Unemotional traits (Frick 2004). Total callous-unemotional traits were negatively correlated with anterior temporal lobe gray matter volume (GMV). Callous traits in particular exhibited a reliable negative correlation with gray matter volume in nearly every paralimbic brain region examined. Uncaring traits were positively correlated with GMV in the orbitofrontal and anterior cingulate cortices. These findings demonstrate specific neural features within the paralimbic cortex and limbic system that accompany elevated callous-unemotional traits and serves to expand our understanding of pathophysiological mechanisms that may give rise to severe conduct problems in youth. Keywords: Callous-unemotional traits, Conduct disorder, Gray matter volume, Voxel-based morphometry, Paralimbic system dysfunctio
    corecore