3,550 research outputs found

    Derivation of a Self-Consistent Auroral Oval Model Using the Auroral Boundary Index

    Get PDF
    The position and intensity of the auroral oval has many implications for the Air Force from determining the effects of incoming electron flux on DoD systems to modeling the ionosphere to exploit current HF communications capabilities. The auroral morphology is a good indicator of the level at which space weather and its near-Earth consequences are occurring, and thus it is important to develop an auroral prediction model. However, since no purely physics-based models exist to describe the temporal and spatial evolution of the auroral zone, space weather practitioners and researchers are forced to produce statistical representations, “organized” by some relevant geophysical parameter. Currently, the most widely used model is the Hardy et al. (1985) auroral oval model, which is binned according to the Kp index. The Kp index is a mid-latitude measure of planetary geomagnetic activity, and was presumed to be well-correlated to the size and shape of the auroral region. However, subsequent research has shown that Kp is probably not the best binning parameter. This study used the Auroral Boundary Index (ABI) to parameterize the statistics of the auroral oval location since it is a measurement of the electron fluxes computed directly from sensors aboard the DMSP satellites. Thus, the current work represents a move toward a more self-consistent—and presumably more accurate—climatological representation of the auroral oval boundaries. This was accomplished by recreating the process performed by Hardy et al., substituting the ABI for the Kp index and deriving an entirely new set of auroral ovals based on almost 11 years of DMSP data from the F8 and F9 satellites. To quantitatively assess the differences between the two models, electron flux values were compared to actual DMSP data of individual satellite passes. Preliminary findings suggest that the new ABI auroral oval model is, at worst, comparable to the results achieved by Hardy et al. Further refinement of this new model based on the ABI should increase its effectiveness and offer a more reliable alternative to previous auroral models

    Extraction and Separation Modeling of Orion Test Vehicles with ADAMS Simulation

    Get PDF
    The Capsule Parachute Assembly System (CPAS) project has increased efforts to demonstrate the performance of fully integrated parachute systems at both higher dynamic pressures and in the presence of wake fields using a Parachute Compartment Drop Test Vehicle (PCDTV) and a Parachute Test Vehicle (PTV), respectively. Modeling the extraction and separation events has proven challenging and an understanding of the physics is required to reduce the risk of separation malfunctions. The need for extraction and separation modeling is critical to a successful CPAS test campaign. Current PTV-alone simulations, such as Decelerator System Simulation (DSS), require accurate initial conditions (ICs) drawn from a separation model. Automatic Dynamic Analysis of Mechanical Systems (ADAMS), a Commercial off the Shelf (COTS) tool, was employed to provide insight into the multi-body six degree of freedom (DOF) interaction between parachute test hardware and external and internal forces. Components of the model include a composite extraction parachute, primary vehicle (PTV or PCDTV), platform cradle, a release mechanism, aircraft ramp, and a programmer parachute with attach points. Independent aerodynamic forces were applied to the mated test vehicle/platform cradle and the separated test vehicle and platform cradle. The aero coefficients were determined from real time lookup tables which were functions of both angle of attack ( ) and sideslip ( ). The atmospheric properties were also determined from a real time lookup table characteristic of the Yuma Proving Grounds (YPG) atmosphere relative to the planned test month. Representative geometries were constructed in ADAMS with measured mass properties generated for each independent vehicle. Derived smart separation parameters were included in ADAMS as sensors with defined pitch and pitch rate criteria used to refine inputs to analogous avionics systems for optimal separation conditions. Key design variables were dispersed in a Monte Carlo analysis to provide the maximum expected range of the state variables at programmer deployment to be used as ICs in DSS. Extensive comparisons were made with Decelerator System Simulation Application (DSSA) to validate the mated portion of the ADAMS extraction trajectory. Results of the comparisons improved the fidelity of ADAMS with a ramp pitch profile update from DSSA. Post-test reconstructions resulted in improvements to extraction parachute drag area knock-down factors, extraction line modeling, and the inclusion of ball-to-socket attachments used as a release mechanism on the PTV. Modeling of two Extraction parachutes was based on United States Air Force (USAF) tow test data and integrated into ADAMS for nominal and Monte Carlo trajectory assessments. Video overlay of ADAMS animations and actual C-12 chase plane test videos supported analysis and observation efforts of extraction and separation events. The COTS ADAMS simulation has been integrated with NASA based simulations to provide complete end to end trajectories with a focus on the extraction, separation, and programmer deployment sequence. The flexibility of modifying ADAMS inputs has proven useful for sensitivity studies and extraction/separation modeling efforts.

    Economic estimates of invasive wild pig damage to crops in 12 US states

    Get PDF
    We report the results of a survey on invasive wild pig (Sus scrofa L.) damage and control in 12 US states (Alabama, Arkansas, California, Florida, Georgia, Louisiana, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, and Texas). The crops chosen for this study represent the “second-tier” in terms of economic importance after the six crops that were the subject of Anderson et al. (2016). The survey was distributed by the USDA National Agricultural Statistical Service (NASS) in the summer of 2019 to a sample of producers in each of the states (except California) of the following six crops: hay, pecans (Carya illinoinensis (Wangenh.) K.Koch), melons (cantaloupe (Cucumis melo L. var. cantalupensis), honeydew (Cucumis melo L. (Inodorus Group)), and watermelon (Citrullus Schrad.), sugarcane (Saccharum officinarum L.), sweet potatoes (Ipomoea batatas (L.) Lam.), and cotton (Gossypium L.). In California, where there the crops of economic importance differed from the other states in the study, damages were calculated for producers of hay, almonds (Prunus dulcis (Mill.) D.A. Webb), grapes (Vitis vinifera L.), sod, carrots (Daucus L.), lettuce (Lactuca L.), and strawberries (Fragaria L.). In total, 7438 respondents completed the questionnaire. Findings indicate that damage can be substantial. The highest yield loss estimates occurred for hay in Texas. Control efforts were common, but no control method was rated by the majority of producers as very effective. Extrapolating crop damage estimates to the state-level in 12 states with reportable damage yielded an estimated crop loss of $272 million/yr. Though large, this number likely represents only a small fraction of the total damage by wild pigs in these states because it only includes crop damage to six crops. We hope findings from this survey will help guide control efforts and research, as well as serve as a benchmark against which the effectiveness of future control efforts can be measured

    Evolution of a Reconfigurable Processing Platform for a Next Generation Space Software Defined Radio

    Get PDF
    The National Aeronautics and Space Administration (NASA)Harris Ka-Band Software Defined Radio (SDR) is the first, fully reprogrammable space-qualified SDR operating in the Ka-Band frequency range. Providing exceptionally higher data communication rates than previously possible, this SDR offers in-orbit reconfiguration, multi-waveform operation, and fast deployment due to its highly modular hardware and software architecture. Currently in operation on the International Space Station (ISS), this new paradigm of reconfigurable technology is enabling experimenters to investigate navigation and networking in the space environment.The modular SDR and the NASA developed Space Telecommunications Radio System (STRS) architecture standard are the basis for Harris reusable, digital signal processing space platform trademarked as AppSTAR. As a result, two new space radio products are a synthetic aperture radar payload and an Automatic Detection Surveillance Broadcast (ADS-B) receiver. In addition, Harris is currently developing many new products similar to the Ka-Band software defined radio for other applications. For NASAs next generation flight Ka-Band radio development, leveraging these advancements could lead to a more robust and more capable software defined radio.The space environment has special considerations different from terrestrial applications that must be considered for any system operated in space. Each space mission has unique requirements that can make these systems unique. These unique requirements can make products that are expensive and limited in reuse. Space systems put a premium on size, weight and power. A key trade is the amount of reconfigurability in a space system. The more reconfigurable the hardware platform, the easier it is to adapt to the platform to the next mission, and this reduces the amount of non-recurring engineering costs. However, the more reconfigurable platforms often use more spacecraft resources. Software has similar considerations to hardware. Having an architecture standard promotes reuse of software and firmware. Space platforms have limited processor capability, which makes the trade on the amount of amount of flexibility paramount

    Extraction-Separation Performance and Dynamic Modeling of Orion Test Vehicles with Adams Simulation: 2nd Edition

    Get PDF
    NASA's Orion Capsule Parachute Assembly System (CPAS) project has advanced into the third generation of its parachute test campaign and requires technically comprehensive modeling capabilities to simulate multi-body dynamics (MBD) of test articles released from a C-17. Safely extracting a 30,000 lbm mated test article from a C-17 and performing stable mid-air separation maneuvers requires an understanding of the interaction between elements in the test configuration and how they are influenced by extraction parachute performance, aircraft dynamics, aerodynamics, separation dynamics, and kinetic energy experienced by the system. During the real-time extraction and deployment sequences, these influences can be highly unsteady and difficult to bound. An avionics logic window based on time, pitch, and pitch rate is used to account for these effects and target a favorable separation state in real time. The Adams simulation has been employed to fine-tune this window, as well as predict and reconstruct the coupled dynamics of the Parachute Test Vehicle (PTV) and Cradle Platform Separation System (CPSS) from aircraft extraction through the mid-air separation event. The test-technique for the extraction of CPAS test articles has evolved with increased complexity and requires new modeling concepts to ensure the test article is delivered to a stable test condition for the programmer phase. Prompted by unexpected dynamics and hardware malfunctions in drop tests, these modeling improvements provide a more accurate loads prediction by incorporating a spring-damper line-model derived from the material properties. The qualification phase of CPAS testing is on the horizon and modeling increasingly complex test-techniques with Adams is vital to successfully qualify the Orion parachute system for human spaceflight
    corecore