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AFIT/GAP/ENP/04-01 
Abstract 

 

The position and intensity of the auroral oval has many implications for the Air 

Force from determining the effects of incoming electron flux on DoD systems to 

modeling the ionosphere to exploit current HF communications capabilities.  The auroral 

morphology is a good indicator of the level at which space weather and its near-Earth 

consequences are occurring, and thus it is important to develop an auroral prediction 

model.  However, since no purely physics-based models exist to describe the temporal 

and spatial evolution of the auroral zone, space weather practitioners and researchers are 

forced to produce statistical representations, “organized” by some relevant geophysical 

parameter.  Currently, the most widely used model is the Hardy et al. (1985) auroral oval 

model, which is binned according to the Kp index.  The Kp index is a mid-latitude 

measure of planetary geomagnetic activity, and was presumed to be well-correlated to the 

size and shape of the auroral region.  However, subsequent research has shown that Kp is 

probably not the best binning parameter.    

This study used the Auroral Boundary Index (ABI) to parameterize the statistics 

of the auroral oval location since it is a measurement of the electron fluxes computed 

directly from sensors aboard the DMSP satellites.  Thus, the current work represents a 

move toward a more self-consistent—and presumably more accurate—climatological 

representation of the auroral oval boundaries.  This was accomplished by recreating the 

process performed by Hardy et al., substituting the ABI for the Kp index and deriving an 

entirely new set of auroral ovals based on almost 11 years of DMSP data from the F8 and 

F9 satellites.  To quantitatively assess the differences between the two models, electron 

flux values were compared to actual DMSP data of individual satellite passes.  

Preliminary findings suggest that the new ABI auroral oval model is, at worst, 

comparable to the results achieved by Hardy et al.  Further refinement of this new model 

based on the ABI should increase its effectiveness and offer a more reliable alternative to 

previous auroral models.
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DERIVATION OF A SELF-CONSISTENT AURORAL OVAL MODEL USING THE  
 

AURORAL BOUNDARY INDEX 
 
 
 

1. Introduction 
 
 
Background 

The Department of Defense (DoD) relies heavily on space and ground based 

systems to support and defend the United States.  Space weather impacts are a major 

concern in order to keep these systems fully operational.  Space weather refers to any 

disturbance on the Sun and in the solar wind, magnetosphere, ionosphere, and 

thermosphere that can degrade the performance and reliability of space and ground based 

systems or cause a threat to human life or health.  Some examples of affected systems 

include (but is not limited to) satellite communications (SATCOM), HF radio 

communications, Global Positioning System (GPS), weather satellites, high-flying 

aircraft, and any ground based radar systems.   

 The auroral oval is a good indicator to determine the level at which space weather 

and its near-Earth consequences are occurring.  The auroral oval is a region several 

degrees wide that encircles both magnetic poles and is caused by energetic particles 

flowing into both polar regions from the tail of the magnetosphere.  An increase of 

electron particle flux into the magnetosphere due to elevated activity from the Sun causes 

the diffuse auroral oval boundary to expand equatorward.  The diffuse aurora is the 

equatorward portion of the auroral oval and is created by electrons entering the upper 
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atmosphere from the central plasma sheet. In other words, the diffuse auroral boundary 

expands and contracts in response to geomagnetic and solar wind forcing.  By 

understanding the details of the auroral oval boundary locations, we can learn more about 

the way the solar wind interacts with the geomagnetic field.  A derived auroral oval can 

be used by ionospheric models to help predict how to best exploit HF communications 

and over-the-horizon radar capabilities.  Also, a derived auroral oval can be used as a 

“first look” product to determine whether an energetic particle event will affect a given 

DoD system. 

Problem Statement 

 Currently, the most widely used model is the Hardy auroral oval model.  It is used 

to determine the average characteristics of auroral electron precipitation as a function of 

magnetic local time, magnetic latitude, and geomagnetic activity as measured by the Kp 

index [Hardy et al., 1985].  According to Dr. Frederick Rich, Air Force Research 

Laboratory (AFRL) at Hanscom AFB MA, this model does have some deficiencies.  One 

deficiency is that the equatorward edge of the auroral boundary is much wider in the 

model than actual measurements taken from the Defense Meteorological Satellite 

Program (DMSP) satellites.  One factor contributing to this discrepancy is that the Hardy 

auroral oval model is binned according to the Kp index, which is a measure of planetary 

geomagnetic activity and not directly correlated to the auroral oval boundary.   

Information about the location and size of the aurora is critically important for 

determining the rate of energy deposition into the upper atmosphere by electron 

precipitation into the atmosphere and is a key input to global circulation models which 
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are needed to improve the prediction of ionospheric storm effects which can severely 

disrupt satellite orbits, electricity grids, and radio communication.  Since the science of 

space physics is still in its early stages, one of the best ways to predict auroral boundaries 

is to statistically relate measured DMSP flux values with another parameter that is 

dependent upon geomagnetic activity.  For the Hardy auroral model, the parameter of Kp 

was chosen since it is related to auroral currents, strengthens during high-latitude 

magnetic storms, and is computed in a timely manner.   Studies have shown that as a 

geomagnetic storm becomes more intense, the Kp index increases and the edge of the 

auroral boundary typically moves to lower latitudes.  Unfortunately, the Kp index is not 

completely correlated with the auroral boundary, and therefore binning the Hardy auroral 

model according to Kp has the effect of ‘blurring’ the oval boundary.   

Proposed Solution 

 Dr. Rich has proposed that the Hardy auroral model be recomputed using the 

Auroral Boundary Index [Madden & Gussenhoven, 1990].  The Auroral Boundary Index 

(ABI) should provide a more accurate assessment of the auroral oval boundary since it is 

computed directly from the SSJ/4 sensors aboard the DMSP satellites.  A computer 

algorithm returns the position of the equatorward boundary in corrected geomagnetic 

latitude (MLAT), the hourly magnetic local time (MLT) sector in which the boundary is 

located, and the universal time (UT) that the boundary was observed.  The ABI is then 

computed using these input parameters to predict the low-latitude edge of auroral electron 

precipitation projected to local midnight. This new parameter for electron precipitation is 

therefore more self-consistent with the actual DMSP satellite data since it is derived 

directly from the source. 
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The procedure to recompute a new model with the ABI will follow the same basic 

development of the current Hardy auroral model.  The main goal is to produce the 

integral number flux, integral energy flux, and average energy for each level of 

geomagnetic activity as measured by the ABI.  Two sets of databases will be utilized to 

accomplish this task, one being the set of ABI data and the other the raw set of SSJ/4 

sensor data. 

 The set of ABI data must be statistically evaluated and divided into relatively 

equal parts.  The raw SSJ/4 data for each DMSP satellite must be converted into 

differential flux values.  Finally, an algorithm must be written to correlate the SSJ/4 data 

with the ABI and compute the three quantities above for each level of activity. 

Once the program is set up properly, computing the integral fluxes for different 

sets of satellite data is a relatively simple procedure.  It wouldn’t matter if the program 

were run on one year of data or twenty years of data.  To compare this model against the 

original Hardy auroral model, the oval for a particular ABI will be matched up with an 

oval for the corresponding Kp index.  This will allow direct comparison of the auroral 

boundary output from each model.  Also, actual measurements of the auroral boundary 

obtained from a DMSP pass will be compared with the predictions of both models.  The 

results should show that the new model based on the ABI gives a more accurate 

representation of the diffuse auroral boundary than the Hardy auroral model based on the 

Kp index. 
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2. Literature Review 
 
 
Aurora 

The aurora borealis and aurora australis (often referred to as the northern and 

southern lights, respectively) occur at mostly high latitudes from 100 to 300 km above 

the Earth.  The main source of the aurora is an electrical discharge in the upper 

atmosphere [Akasofu, 1981].  It is powered by a solar wind and magnetospheric 

interaction (Akasofu, 1981) and is best described by the following: 

…an aurora is the optical manifestation of auroral-particle precipitation and its 
interaction with atmospheric constituents. Auroral emissions are produced by 
particles, origination from the sun and the earth’s atmosphere, that collide with 
the earth’s atmosphere along streamlines modulated by electric and magnetic 
fields in the magnetosphere and ionosphere.  The size and form of the aurora 
thereby reflect the forces acting on these auroral particles as they journey from 
their source to the earth’s upper atmosphere.  [Carlson & Egeland, 1995] 
 

The solar wind is a stream of magnetized electrons and protons that is continually emitted 

by the Sun.  This particle stream is ejected in all directions and travels at 400 kilometers 

per second on average.  When the solar wind reaches the Earth, it compresses the lines of 

the Earth’s magnetic field on the sunward side and stretches them into a long tail on the 

opposite side.  This creates a cavity around the Earth called the magnetosphere.  In 

addition, the magnetic field of the Earth is typically described as being dipolar, meaning 

field lines begin in one hemisphere and terminate in the other hemisphere and are 

considered ‘closed’.  However, at high latitudes the field lines are ‘open’, meaning they 

originate from Earth, but are tied to the plasma of the magnetotail, and eventually merge 

with the magnetic field of the solar wind.  The aurora is formed around the magnetic 

north and south poles and along these boundaries where the closed geomagnetic field 
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lines become open.  See Figure 2.1 for a diagram of the interaction of the solar wind with 

the magnetosphere.  The open/closed boundary usually occurs at approximately 77° 

magnetic latitude at noon and at 67° magnetic latitude at midnight for periods of quiet to 

moderate activity. With this boundary connected to the solar wind, the intensity of the 

aurora is closely related to solar activity.  Energetic eruptions from solar flares can send 

huge amounts of charged particles into space, and if directed Earthward, can increase 

nominal incoming energy levels by three orders of magnitude.  The result is an expanded 

auroral oval into lower latitudes. 

 
 

 
Figure 2.1.  Interaction of the Solar Wind with the Earth’s Magnetosphere 
 
 
 
The optical spectrum of an aurora is very similar to that produced by the 

discharge of gas under extremely high voltage.  Energetic electrons from the solar wind 

trapped in the Earth’s magnetotail flow down along magnetic field lines and collide with 

neutral and ionized atoms in the upper atmosphere. The collisions force some of the 
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electrons in those atoms to become excited as they absorb the energy and are pushed to a 

higher energy state. As the excited electrons return to their initial, lower energy state, 

they will release the extra energy as photons in the ultraviolet (UV), visible, and infrared 

(IR) wavelengths [Carlson & Egeland, 1995]. Ultraviolet radiation coming from the Sun 

dissociates oxygen molecules into atomic oxygen, which becomes one of the main 

components of the upper atmosphere (ionosphere) (Figure 2.2).  When these atoms are 

excited by precipitating electrons, they emit the typical greenish-white light of the aurora.  

Higher energy electrons can penetrate deeper into the lower part of the atmosphere and 

excite the neutral nitrogen molecules there to produce a pink or violet-red color.  Ionized 

nitrogen molecules emit violet-blue light [Akasofu, 1991]. 

 
 

 
Figure 2.2.  Altitude profiles of the Neutral Densities (Schunk & Nagy, 2000) 

 
 
 

 The aurora comes in various forms and sizes but most tend to be grouped into two 

very distinct classifications called diffuse and discrete aurora.  The discrete aurora is what 

we tend to see when we look up into the sky.  They are the ever-changing ribbons and 

arcs.  The particles that power the discrete aurora have a different origin than those that 
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power the diffuse aurora.  The discrete aurora particles are due to the parallel acceleration 

of electrons down along the Earth’s magnetic field lines into the upper atmosphere and 

consist mainly of energies greater than 1 keV.  The individual parts of the discrete aurora 

have a relatively short life-span and can intensify, drift, and fade very quickly.  It often 

forms a multi-banded structure and occurs statistically in the premidnight regions.  

Auroral substorms are comprised mostly of the discrete aurora and are arcs that move 

poleward and westward called the westward traveling surge [Akasofu,1981].   With an 

increase in geomagnetic activity, the discrete aurora will increase in intensity, number, 

and strength [Tascione, 1994]. 

 The diffuse aurora, unlike the discrete aurora, is more difficult to see from the 

Earth because it is relatively dim and lacks sharp outlines.  However, it is much more 

expansive and spread out than the discrete aurora.  See Figure 2.3 for the some of the  

 
 

 
Figure 2.3.  Shapes and Locations of the Discrete and Diffuse Aurora (Akasofu, 1981) 
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characteristics of the shapes and locations of the discrete and diffuse aurora.  The diffuse 

aurora (Figure 2.4) still contains some discrete-like structures but they are weak and 

difficult to observe. The diffuse aurora is found mainly on the equatorward side of the 

auroral zone.  Here, the precipitating particles are drifting around the Earth with electrons 

traveling eastward and protons traveling westward [Carlson & Egeland, 1995].  The 

source of the diffuse aurora comes from particles slowly drifting in from the central 

plasma sheet due to wave-particle interactions that scatter electrons and give them 

velocities that are more parallel to the magnetic field lines.  This change in velocity puts 

the electrons in the loss cone in phase space where they precipitate down into the upper 

atmosphere and create the diffuse aurora.  The particles responsible for the diffuse aurora 

cover a fairly broad range of energies, from a few hundred eV to a few tens of keV.  As 

geomagnetic activity  

 
 

 
Figure 2.4.  Photometric measurements of the Diffuse and Discrete Aurora (Carlson and 

Egeland, 1995) 
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increases, the diffuse auroral oval will expand equatorward along with a brightening of 

the diffuse and discrete aurora [Tascione, 1994]. 

By creating a statistical model of the auroral oval, both the discrete and diffuse 

auroral forms will be captured.  Now, even though the discrete auroral intensity can be 

significantly larger than the diffuse aurora (see Figure 2.4), this is somewhat 

compensated by the transient nature of the discrete aurora.  Thus, one would expect both 

discrete and diffuse auroral forms to contribute significantly to the statistics of any long-

term climatological model [Della-Rose, pers. comm., 2004]. 

Hardy Auroral Oval Model 

 Currently, the most widely used auroral oval model is the Statistical Model of 

Auroral Electron Precipitation developed by D.A. Hardy and M.S. Gussenhoven at the 

Air Force Geophysics Laboratory, Hanscom Air Force Base Massachusetts and E. 

Holeman at the Physics Research Division, Emmanuel College, Boston Massachusetts.  It 

measures the global pattern of auroral electron precipitation as a function of MLT, 

MLAT, and geomagnetic activity using the Kp index as its input parameter [Hardy et al., 

1985].  See the section entitled Kp Index later in this chapter for a description of this 

index. 

Hardy et al. (1985) constructed the model using the Defense Meteorological 

Satellite Program (DMSP) F2 and F4 satellites and the Satellite Test Program (STP) P78-

1 satellite for the years 1977-1980.  Data were collected from the SSJ/3 cylindrical 

curved plate electrostatic analyzers in 16 energy channels covering energy ranges from 

50 eV to 20 keV resulting in a complete spectrum recorded once per second.  Bins were 

created by dividing MLT into 48 30-minute sections and by dividing MLAT from 50˚ to 
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90˚ into 30 sections.  To do this, latitudes between 50˚ to 60˚ and 80˚ to 90˚ were 

incremented every 2˚ and latitudes between 60˚ to 80˚ were incremented every 1˚.  This 

resulted in 1440 bins [Hardy et al., 1985].  Table 2.1 describes how the Kp index was 

categorized.   

 
 

Table 2.1.  Description of the Kp categories used in the Hardy auroral model (adapted 
from Hardy et al., 1985) 

Zone Kp Index 
1 0, 0+ 
2 1-, 1, 1+ 
3 2-, 2, 2+ 
4 3-, 3, 3+ 
5 4-, 4, 4+ 
6 5-, 5, 5+ 
7 6-, 6, 6+, 7-, 7, 7+, 

8-, 8, 8+, 9-, 9 
 
 
 

Twenty-seven total months of data were used from all three satellites.  Fifteen 

months from the F2 and F4 satellites and one year from the P78-1 satellite.  The 

combined temporal coverage of all three satellites was from September 1977 through 

August 1980.  All the data collected were grouped according to the seven zones of Kp as 

listed above.  For each zone, the average and standard deviation of the differential 

number flux for all 16 energy channels in each bin was calculated.  The final product is 

the average differential number flux in each bin for each level of activity.  The averages 

for each energy channel were then input into the following equations to obtain three 

integral quantities for each bin in each Kp zone.  The quantities calculated were the 

integral number flux in units of el/cm2·s·sr defined as: 
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Jtot j E1( ) E2 E1−( )
2

15

i

j Ei( )
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⋅
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the integral energy flux in units of keV/cm2·s·sr defined as:  

JEtot E1 j E1( )⋅ E2 E1−( )
2

15

i

Ei( ) J Ei( )⋅
Ei 1+ Ei 1−−( )

2
⋅







∑

=

+ E16 j E16( )⋅ E16 E15−( )+

 

and the average energy in units of keV defined as: 

E ave
JE tot
J tot  

In these equations, j(Ei) is the average differential number flux in the ith energy channel 

and Ei is the central energy of the ith energy channel [Hardy et al., 1985]. 

Additional smoothing was applied to the integral quantities to help reduce 

residual noise in the data collected by the SSJ/3 sensors. The following equation was 

applied to each integral quantity in each bin.   

αij
3 αij⋅ αi 1− j,+ αi 1+ j,+ αi j 1+,+ αi j 1−,+

7  

The value ‘αij’ corresponds to an individual bin where ‘i’ is the MLT position and ‘j’ is 

the latitude position.  For the bins at the pole (88˚ to 90˚), the average was computed for 

all 48 MLT bins.  Also, for the bins from 50˚ to 52˚, the αi, j-1 term was omitted and the 

sum was divided by 6 rather than 7. This smoothing equation was applied to the integral 

quantities three times [Hardy et al., 1985]. 

The result is a model based on past statistics that can be used to specify the 

current auroral location.  In addition, given a prediction of a future Kp value, a ‘forecast’ 

of the future location of the auroral oval boundary is obtained.   With the input of a 

(2.1)

(2.2)

(2.3)

(2.4)
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geomagnetic activity level or Kp index, the model will produce an output file containing 

a list of the integral number flux, integral energy flux, and average energy for each 

MLT/MLAT bin. This can then be plotted to give a graphical representation of what the 

auroral oval would look like. 

Auroral Oval Boundary 

The reason for a computing an auroral model is because not enough is known 

about the fundamental physics to create a model that fully describes the auroral structure 

as a function of space and time.  Therefore, a statistical relationship must be developed 

between the average auroral oval location and a parameter that is also highly connected to 

auroral physics. 

For the Hardy auroral model, the Kp index was chosen since it is a measure of 

ionospheric currents which intensify during high-latitude magnetic storms.  However, a 

deficiency of the Hardy auroral model is that the equatorward edge of the auroral 

boundary it predicts can be wider than actual measurements taken from the DMSP 

satellites.  One argument for this inconsistency is due to the model’s use of the Kp index 

as its input parameter which, as will be discussed in later in this chapter, is a measure of 

planetary geomagnetic activity in the magnetosphere and not directly correlated to the 

auroral oval boundary. Therefore, binning the Hardy auroral model according to the Kp 

index has the effect of ‘blurring’ the auroral oval boundary.  A typical crossing of a 

DMSP satellite at the equatorward boundary of the auroral zone takes 2 to 4 seconds (0.1 

to 0.3 deg).  In this small latitudinal range, the flux increases by a factor of 100 or more.  

In the Hardy auroral model, the same increase occurs over a 3 to 5 degree latitudinal 

range.  The reason is that even when geophysical conditions as determined by some 
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proxy such as Kp seem to be the same, the real auroral zone has a range of sizes.  The 

Hardy auroral model captures the average of the range of sizes instead of the size at any 

instant in time [Rich, pers. comm., 2003].  By using a self-consistent binning parameter 

instead, a more definitive auroral boundary will hopefully be derived. 

Under the direction of Dr. Fred Rich, a new statistical auroral oval model was 

derived using the Auroral Boundary Index (based on the equivalent midnight boundary) 

[Madden & Gussenhoven, 1990].  The Auroral Boundary Index (ABI) should provide a 

more accurate assessment of the auroral oval boundary since it is computed directly from 

the SSJ/4 sensors aboard the DMSP satellites.  A computer algorithm automatically 

selects the equatorward auroral boundary as the DMSP satellite orbits the Earth.  This 

information is then used as input to compute the ABI [Madden & Gussenhoven, 1990].  

This new parameter for electron precipitation is therefore more self-consistent with the 

actual DMSP satellite data since it is derived directly from the source. 

The advantage of using a more self-consistent binning parameter has been proven 

with the boundary-oriented electron precipitation model of Sotirelis & Newell (2000).  

Their model uses the b2i boundary (the peak precipitating energy flux of 3 – 30 keV ions, 

which can be derived from DMSP SSJ data) as a proxy for the degree of magnetotail 

stretching.  At magnetic latitudes below the b2i boundary, magnetic field lines are no 

longer curved enough to allow pitch angle scattering of ions into the loss cone.  As a 

result, the ion energy flux decreases below this latitude.  The latitude of the b2i boundary, 

projected to magnetic midnight, serves as the “binning” parameter to organize their 

model. 
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Kp Index 

 For this section on the Kp index, I draw heavily on the work by Menvielle & 

Berthelier (1991).  The transient variations of the geomagnetic field at the Earth’s surface 

are the signature of the currents throughout the entire magnetosphere, under the influence 

of the solar wind.  These transient variations can be monitored by ground-based magnetic 

observations by measuring the two horizontal field components, H and D.   

In 1938, J. Bartels proposed a network of observatories to measure these localized 

variations and categorize them as the K index.  It was a code deduced from observed 

amplitude ranges using observatory-based classes.  The K index is computed at 

approximately 200 geomagnetic observatories since its introduction by Bartels.   

Soon after, Bartels also proposed a planetary index utilizing a certain number of 

strategically located observatories from the newly computed K index.  After several years 

of trial and error, Bartels introduced the current Kp index (planetarische Kennziffer) 

(Linthe, 2004) in 1949.  Its computation has remained unchanged since then.   

The global Kp index is obtained as the mean value of the disturbance levels in the 

two horizontal field components, observed at 13 selected, subauroral stations.  Figure 2.5 

shows the locations of the 13 current stations and Table 2.2 lists their names, locations, 

and latitudes.  The original Kp network contained 11 observatories, with most of them 

located in North America and Western Europe, and only one in the southern hemisphere.  

With the addition of two stations, one in 1954 and another in 1970, there are now 13 total 

observatories comprising the Kp network.  Due to their sparseness and clustered nature, it 

is not difficult to understand why the 13 observatories do not provide a true picture of the 

Earth’s geomagnetic activity. 
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Figure 2.5.  The Kp network in 1988 (adapted from Menvielle & Berthelier, 1991) 

 
 
 

Table 2.2.  Stations in the Kp network (adapted from Linthe, 2004) 

Observatory Code Location Geomagnetic 
Latitude 

Northern Hemisphere 
Meanook MEA Canada 61.7° 
Sitka SIT Alaska 60.4° 
Lerwick LER Scotland 62.0° 
Ottawa OTT Canada 55.8° 
Uppsala UPS Sweden 58.5° 
Eskdalemuir ESK Scotland 57.9° 
Brorfelde BFE Denmark 55.4° 
Fredericksburg FRD Virginia 48.6° 
Wingst WNG Germany 54.1° 
Niemegk WIT Germany 51.9° 
Hartland HAD England 54.0° 

Southern Hemisphere 
Eyrewell EYR New Zealand 47.2° 
Canberra† CNB Australia 42.9° 
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To compute the Kp index, each of the 13 observatory’s K index is converted into a 

Ks standardized value using conversion tables developed by Bartels.  This conversion to a 

standardized value is meant to overcome any local time influences, which can vary from 

season to season.  However, it has been proven that these standardized conversion tables 

are only valid for the time period used in their formulation.  To compute the Kp index, 

the average of Ks is taken using the formula shown in Figure 2.6.  The Ks data for the 

two stations Brorfelde and Uppsala, as well as for Eyrewell and Canberra, are combined 

so that their average enters into the final calculation with the divisor remaining 11. 

 
 

 
Figure 2.6.  Derivation of the Kp index from each station’s K index (adapted from 

Menvielle & Berthelier, 1991) 
 
 
 

The Kp index was undoubtedly a pioneering effort to condense massive amounts 

of data into a usable index when proposed by Bartels in 1949, and it has been 

unquestionably essential in the measurements of geomagnetism, but the fact remains 

clear that it is not perfect.  As shown by Menvielle & Berthelier (1991), the am or Km 

Station
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indices prove to indicate the planetary geomagnetic activity level much better than Kp, 

whose continued use is really only out of tradition. 

The Kp index is published yearly in the International Service of Geomagnetic 

Indices (ISGI) Bulletin 32.  However, the U.S. Air Force has compiled its own network 

of observatories and computes a “non-official” Kp index in real-time. 

Auroral Boundary Index 

The information for this entire section on the Auroral Boundary Index is cited 

from the work by Madden & Gussenhoven (1990).  The official name of the index is 

"The Air Force Research Laboratory Auroral Boundary Index", or ABI, and was 

developed at the USAF Research Laboratory, Hanscom AFB MA.  It is the latitude of the 

equatorward edge of the diffuse aurora, projected to magnetic midnight, and is routinely 

calculated with about 30 min resolution from DMSP precipitating electron data.   

The auroral ovals encircle the magnetic poles rather than the geographic poles.  In 

addition, as geomagnetic activity increases, the oval will be offset toward the 

postmidnight local time sector.  It is therefore increasingly difficult to correlate the 

auroral oval boundaries measured at different local times with the same geomagnetic 

activity.  To aid in these measurements, a scaling process needed to be incorporated.  

This was accomplished by statistically determining the auroral oval boundaries for every 

local time sector as a function of a magnetic activity index. 

The establishment of regression coefficients for a linear fit of equatorward auroral 

boundaries to Kp values was conducted by a statistical survey. This was completed for all 

magnetic local time sectors.  Table 2.3 lists these regression coefficients by magnetic 

local time sector.  The climatological relation of the regression coefficients, A and B, 
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MLAT (L), and geomagnetic activity, Kp, at one MLT sector, T, is shown by Equation 

2.5.   

LT = AT + BT · Kp 

 
Table 2.3.  Regression coefficients of auroral equatorward boundaries vs. Kp for all 

boundaries, 1983-1990 (Madden & Gussenhoven, 1990) 
Magnetic 

Local Time 
Number of 
Boundaries

Intercept
AT 

Slope 
BT 

Correlation 
Coefficient 

00-01 2349 67.57 -1.62 -0.73 
01-02 43 68.31 -1.39 -0.66 
02-03 41 68.92 +0.03 +0.03 
03-04 2741 67.07 -1.50 -0.56 
04-05 12900 66.56 -1.82 -0.76 
05-06 20682 67.28 -1.79 -0.78 
06-07 16186 68.10 -1.83 -0.74 
07-08 13369 68.17 -1.65 -0.68 
08-09 17422 68.98 -1.58 -0.67 
09-10 17873 69.13 -1.24 -0.56 
10-11 6565 68.99 -1.00 -0.46 
11-12 2218 68.54 -0.62 -0.30 
12-13 1056 68.90 -0.34 -0.16 
13-14 1296 70.76 -0.37 -0.18 
14-15 1564 71.48 -0.63 -0.29 
15-16 1785 72.73 -1.12 -0.50 
16-17 3332 73.22 -1.46 -0.71 
17-18 8193 72.20 -1.48 -0.74 
18-19 19946 71.64 -1.64 -0.80 
19-20 17347 71.09 -1.85 -0.82 
20-21 17539 69.71 -1.66 -0.78 
21-22 14175 69.25 -2.07 -0.84 
22-23 16234 67.89 -1.88 -0.83 
23-24 11205 67.18 -1.75 -0.81 

 
 
 
For each 100-minute orbit, the DMSP satellite crosses the northern auroral oval 

twice and the southern auroral oval twice.  For each boundary crossing, the following 

data are collected:  MLAT (same as LT in Equation (2.5)), MLT, and UT.  Using the 

regression coefficients (Table 2.3) derived from the linear regression relation (equation 

(2.5)



 

 2-16

2.5) between the equatorward auroral boundary and the actual Kp index, the DMSP 

measured latitude, LT(t), can now be correlated to a statistical Kp* using the following 

equation: 

Kp*(t) = [LT(t) – AT] / BT 

  An equivalent midnight boundary is then computed using Kp*(t) to predict the 

low-latitude edge of auroral electron precipitation projected to local midnight. In other 

words, the actual boundary, at magnetic local time T, is projected to the midnight sector 

at magnetic local time T = 00 by applying Kp*(t) to the following equation: 

L00(t) = A00 + B00 ·  Kp
*(t) = A00 + (B00/BT) · (LT(t) – AT) 

where A00 and B00 are the regression coefficients at midnight and L00(t) is the equivalent 

midnight boundary. The continuing time series of these computed equivalent midnight 

boundaries is what comprises the the Auroral Boundary Index.   

The relation between the statistical Kp* and its equivalent midnight boundary is 

shown in Table 2.4. 

 
 

Table 2.4.  Relation between Kp* and the ABI using Equation (2.6)
Kp* ABI 

0 67.67 
0+ 67.03 
1- 66.49 
1 65.95 

1+ 65.41 
2- 64.87 
2 64.33 

 

Kp* ABI 
2+ 63.79 
3- 63.25 
3 62.71 

3+ 62.17 
4- 61.63 
4 61.09 

4+ 60.55 
 

Kp* ABI 
5- 60.01 
5 59.47 

5+ 58.93 
6- 58.39 
6 57.85 

6+ 5731 
7- 56.77 

 

Kp* ABI 
7 56.23 

7+ 55.69 
8- 55.15 
8 54.61 

8+ 54.07 
9- 53.53 
9 52.99 

 
 

The only boundaries used to create the ABI were those that were evening 

boundaries and those where the negative of the boundary correlation with Kp was greater 

(2.7)

(2.6)
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than 0.75.  Therefore, the selection criteria consisted of only the evening boundaries 

between 18 and 24 MLT (see Table 2.3).  Figure 2.7(a) shows a 12 day period in 1989 

using all boundaries for all MLTs (before selection criteria was applied).  This figure 

indicates many data points that are extremely high or low which occur fairly randomly.  

Notice also the large variability from data point to data point.  This was a result of 

mapping both the morning and the evening boundaries to midnight.  Figure 2.7(b) shows 

the same time period after applying the selection criteria.  By using only the evening 

boundaries, the obviously extreme data points are eliminated. 

 
 

 

 

 

 

 

 

 

 

 

      (a)                                                                     (b)        

Figure 2.7.  (a) ABI for 12 day period in 1989 using all boundaries for all MLT’s 
 (b) Same period after applying selection criteria (Madden & Gussenhoven, 1990) 
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Defense Meteorological Satellite Program (DMSP) 

All of the technical information for this section was obtained from an internet 

website hosted by the Global Hydrology Resource Center, Marshall Space Flight Center 

and maintained by Greg Deuel with a revision date of June 11, 1997.   

The Defense Meteorological Satellite Program (DMSP) 5D-2 is the military's 

sixth generation of weather satellites (Figure 2.8). The DMSP satellites operate in two 

satellite constellations to provide worldwide near real-time meteorological, 

oceanographic and solar-terrestrial physics measurements in support of DoD operations. 

The two DMSP satellites used for this study were the F8 and F9 with operational 

lifetimes from June 1987 to August 1991 and February 1988 to March 1992, respectively.  

Both satellites are near-circular, polar orbiting, and sun-synchronous 

 
 

 
Figure 2.8.  Schematic of the DMSP 5D-2 weather satellite 

 
 
 
The visible and infrared sensors aboard the satellite collect images of global cloud 

distribution across a 3,000 km swath during both daytime and nighttime conditions. The 
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coverage of the microwave imager and temperature sounder is approximately one-half 

the visible and infrared sensor’s coverage, covering the polar regions above 60 deg on a 

twice-daily basis and the equatorial region on a daily basis. The F8 satellite flies in the 

local time meridian of 0600/1800 MLT and the F9 satellite in the local time meridian of 

0932/2132.  Figure 2.9 shows the orbital coverage of both the F8 and F9 satellites which 

provide coverage of most of the auroral region except for two sections postmidnight and 

postnoon.  

 
 

 
Figure 2.9.  Combined orbital coverage of the DMSP F8 and F9 satellites 
 
 
 
The F8 and F9 satellites were built by General Electric’s Astro-Space Division 

and are the military version of NOAA’s TIROS weather satellites.  They measure 3.5 

meters long and 1.2 meters wide with a 725 kilogram mass. 
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Command and control was provided by the 6th Satellite Operations Group at 

Offutt AFB, Nebraska with data transmitted to tactical terminals worldwide and 

processed by the Air Force Weather Agency (AFWA) also at Offutt AFB and by the 

Fleet Numerical Meteorological and Oceanography Center (FNMOC) at Monterey, 

California. 

The space environmental sensors record along-track plasma densities, velocities, 

composition, and drifts and include:  Operational Linescan System (OLS) - 

visible/infrared imager, Special Sensor Microwave Temperature Sounder (SSM/T) - 

atmospheric sounder producing cloud temperature profiles, Special Sensor Ionospheric 

and Electron Scintillation Meter (SSIES) – measuring ambient electron and ion density 

and temperatures and plasma drift and scintillation, Special Sensor Microwave Imager 

(SSM/I) - microwave imager measuring ice coverage, precipitation areas and intensities, 

cloud water content, and ocean surface wind speeds, Special Sensor Gamma/X-Ray 

Detector (SSB/X-M) - gamma and x-ray spectrometer, Special Sensor Precipitating 

Electron and Ion Spectrometer (SSJ/4) - measures ion and electron densities. 

Special Sensor Precipitating Electron and Ion Spectrometer (SSJ/4). 

The SSJ/4 sensor provides a complete energy spectrum of the particles that cause 

the aurora and other phenomena.  The data consists of electron and ion particle fluxes in 

20 energy channels between 30 eV and 30 keV recorded every second [Hardy et al., 

1984]. 

The SSJ/4 instrument was designed to measure the flux of charged particles as 

they enter the Earth’s upper atmosphere from the near-Earth space environment.  It 

consists of four cylindrical curved plate electrostatic analyzers with a look direction 
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oriented radially outward from the Earth.  Each analyzer consists of three components; an 

aperturing system, a set of two concentric cylindrical curved plates, and a pair of 

channeltrons. The aperture system aligns the incoming particles for access to the 

cylindrical plates.  Electrons and ions of the selected energy are deflected toward the 

inner plate by an imposed electric field (100 volts for electrons) applied across the two 

plates.  For a particle to be counted, its centrifugal force produced from the electric field 

must equal the electric field force itself.  When this occurs, the particle is channeled 

between the plates and contacts the channeltron.  Lower energy particles between 30 eV 

and 1000 eV are measured logarithmically by one set of cylindrical plates with a radius 

of curvature of 127°.  Higher energy particles between 1 keV and 30 keV are measured 

logarithmically by another set of cylindrical plates with a radius of curvature of 60° 

[Hardy et al., 1984]. 
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3. Methodology
 
 
Introduction 

 The Hardy Auroral Oval Model is the most widely used auroral model in use 

today by the Air Force.  There exist many other versions of auroral models, each with 

their own limitations.  With this in mind, the initial focus of this thesis was to only 

improve upon the already proven model.  This was accomplished by recreating the 

process performed by Hardy et al. (1985), substituting the Auroral Boundary Index for 

the Kp index and thereby allowing for a more self-consistent result.  With the increase in 

computing power since 1985, a larger sample size was chosen to help ensure statistical 

significance of the results.  In addition, much of the code had to be reproduced, which 

absorbed a large portion of the allotted research time.  The remainder of this chapter 

focuses on the data, methods, techniques, and criteria used to produce a statistical auroral 

oval model based on the Auroral Boundary Index. 

Auroral Boundary Index Data 

 The data for the Auroral Boundary Index was obtained from Dr. Rich for the 

years from 1987 through 1994.  The only days with missing values were November 6, 

1987 and October 27, 1992 through November 2, 1992.  This didn’t affect the final result, 

though, as those days were also missing from the DMSP data.  The number of ABI values 

averaged out to approximately 39 per day.  The data was ordered by year, day, second, 

and ABI value.   

First, a statistical evaluation was performed on the raw ABI data.  A FORTRAN 

program was written to read in the eight separate raw data files, sort the ABI values, and 
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total the number of occurrences for each value.  See Figure 3.1 for the distribution of 

these values.  Note that the occurrences are small for the lower ABI values (very high 

geomagnetic activity) and for the higher ABI values (very low geomagnetic activity).  

The peak of the distribution occurs between ABI values of 63 and 64 which is an average 

geomagnetic activity level.  This program also attempted to evaluate this distribution of 

ABI values at five percent, 10 percent, and 20 percent intervals.  Eventually, it was 

decided to not group any values into ranges, but to proceed with one degree ABI 

intervals.  Table 3.1 lists the final zones. 

 
 

 
Figure 3.1.  Frequency Distribution of ABI values from 1987 to 1994 
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Table 3.1.  Division of ABI values into 20 zones 
Zone ABI Range 

1 49 to 49.9 
2 50 to 50.9 
3 51 to 51.9 
4 52 to 52.9 
5 53 to 53.9 
6 54 to 54.9 
7 55 to 55.9 

 

Zone ABI Range 
8 56 to 56.9 
9 57 to 57.9 
10 58 to 58.9 
11 59 to 59.9 
12 60 to 60.9 
13 61 to 61.9 
14 62 to 62.9 

 

Zone ABI Range 
15 63 to 63.9 
16 64 to 64.9 
17 65 to 65.9 
18 66 to 66.9 
19 67 to 67.9 
20 68 to 68.9 

 
 

Another FORTRAN program was written to also read in the eight separate raw 

data files, convert all time values from seconds to minutes of the day, and interpolate 

between these minute values to convert the database into one record per minute to cover 

an entire day.  This resulted in one output file containing 4,196,160 records (1440 

minutes per day times 2914 total days).  This file was then used as input to associate ABI 

values with the differential flux data recorded by the DMSP satellites. 

DMSP SSJ/4 Data 

Almost 11 years of DMSP data was statistically averaged in deriving this new 

auroral oval model.  For the DMSP F8 satellite, data was included from June 25, 1987 

through August 1, 1994, which accounted for a little over seven years of the total.  A total 

of 31 days from this time period were not used either because they were unavailable or 

corrupt.  The following is a list of those days: 

July 17-21, 1987 
November 6, 1987 

April 11, 1992 
October 27, 1992 – November 2, 1992 

June 28, 1993 – July 13, 1993 
July 29, 1994 
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For the DMSP F9 satellite, data was included from February 8, 1988 through December 

31, 1991, which accounted for almost four years of the total.  Only one day (February 18, 

1988) was excluded from this time period because it was either unavailable or corrupt. 

 These data, also obtained from Dr. Rich, consisted of 12.6 gigabytes of raw, 

binary DMSP SSJ/4 data.  Each record contained one minute of flight data including 

electron and ion spectra, along with the year, day, UT, MLT, and position in geographic 

and magnetic coordinates both at altitude and mapped down to 110 km.  For this study, 

like the original Hardy model, only the electron spectra were used to create the auroral 

model, and data from both poles were used and averaged together. 

Differential Flux Output 

Dr. Rich also provided an Interactive Data Language (IDL) program to read the 

binary DMSP SSJ/4 data files and convert the data first to counts, then to electron 

differential number fluxes.  This program gave me a platform to create my own version 

of differential flux output.  The code was greatly modified both in its input and its output.  

The basic portion of the program that manipulated the data to produce the differential 

flux values remained unaltered. 

The original program created a color spectrogram of the differential number 

fluxes.  The first step was to turn off this feature as only the raw differential flux numbers 

were needed.  Next, the code was changed to allow the input of more than one file.  Each 

day of DMSP SSJ/4 data is contained within its own file.  Since there were 3986 of these 

files that had to be read into the program, automating the process was crucial.  The 

program also required the input of the satellite number for each file.  This was needed in 
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order to access the correct geometric factors data.  Since each file’s name included the 

satellite number, a portion of code was added to extract it.   

One of the most important steps was associating each record of the SSJ/4 data 

with the ABI data.  The entire file of 4,196,160 records of ABI data was read into an 

array and accessed by year, day, and minute to extract the ABI value for the current SSJ/4 

record.  This step was checked many times to ensure the correct values were being 

extracted.   

The program allowed for the output resolution to be changed to suit the user’s 

needs.  For instance, it could be adjusted via an input parameter to produce a record for 

every minute of data or a record for every second of data.  Since a DMSP satellite flies at 

approximately 7.4 km/s, one minute resolution would have skipped entire bins or at least 

drastically reduced the amount of differential flux values available to average in each bin.  

Therefore, the output of the program was set to one second resolution.  However, the 

SSJ/4 data contained only one latitude value per minute.  So another very important 

modification to the program was to interpolate the latitude between each minute so that 

each second had its own latitude. 

Finally, rather than write one huge output file of differential fluxes, they were 

written just like the input files with one day’s data per file.  The final result was 3986 

binary files totaling 14.7 gigabytes.  Each record of data in the output files was for one 

second as noted above and contained all pertinent information for that second including 

the year, day, universal time, magnetic local time, magnetic latitude, ABI, and the 

differential flux values for all 20 channels. 
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Integral Flux Output 

 To create a statistical auroral oval model, the result must be a grid containing 

three averaged quantities: integral number flux, integral energy flux, and average energy.  

The same gridding procedure that Hardy et al. (1985) used was followed.  The goal was 

to try and deviate as little as possible from the original Hardy auroral model.  To 

accomplish this, a polar projection plot was created with the center at the geomagnetic 

pole.  Magnetic local time was divided into one-half-hour sections for a total of 48 

divisions in the circumference.  Geomagnetic latitude was separated into 30 divisions in 

the radial with 2° increments between 50° and 60° and between 80° and 90°.  The range 

from 60° to 80° was incremented every 1°.  This basic grid structure is shown in Figure 

3.2.  

 
 

 
Figure 3.2.  Grid structure used in binning the ABI auroral model. 48 divisions in 

magnetic local time and 30 divisions in corrected geomagnetic latitude 
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The reason for separating the ABI into 20 zones (or geomagnetic activity levels) 

is because one of these grids must be created for each of these activity levels.  An IDL 

program was written to read in the 3986 differential flux binary files and order each flux 

by ABI zone, MLT, MLAT, and energy channel.  Recall that each differential flux output 

record contains a flux for each of the 20 energy channels.  Thus, for a given ABI zone, 

each one of the 1440 MLT/MLAT “bins” had to record 20 electron differential flux 

values (corresponding to the 20 channels of data).  As the differential fluxes were read in, 

they were sorted by these criteria, and a running average was computed for each channel 

for all of the bins.  To do this, another element of the array had to keep track of exactly 

how many flux values went into each channel’s average.  By now, the array to handle all 

of this data was over 1.1 million elements.  This was only possible with the massive 

computational and memory capacity of today’s computers.   

 On the preliminary run of this model, spikes in the final averages caused major 

problems with the smoothness of the auroral oval plots.  Due to the random positioning 

and extreme magnitude of these spikes (two orders of magnitude larger than the next 

highest integral energy flux values), we deemed them as unphysical fluxes, and set out to 

eliminate them from the statistics.  To do this, an IDL program was written to evaluate, 

for each channel, the occurrences of differential flux values in predefined categories.  

Table 3.2 lists these categories. 
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Table 3.2.  Categories of differential flux (in units of el/cm2 s sr eV) used to isolate 
abnormally high fluxes 

Lower Limit Upper Limit 
> 0 < 5
≥ 5 < 10
≥ 10 < 50
≥ 50 < 100
≥ 100 < 500
≥ 500 < 1000
≥ 1000 < 5000
≥ 5000 < 10000
≥ 10000 < 50000

Lower Limit Upper Limit 
≥ 50000 < 100000
≥ 100000 < 500000
≥ 500000 < 1000000
≥ 1000000 < 5000000
≥ 5000000 < 10000000
≥ 10000000 < 50000000
≥ 50000000 < 100000000
≥ 100000000 < 500000000
≥ 500000000 < 1000000000

 

Only the very highest flux values for each channel were then discarded. Figure 

3.3 represents the percentages where the cutoffs were made for each channel.  No more 

than 0.00134% of the values were removed for any of the channels. This method 

completely eliminated the unphysical spikes and allowed the final plots to take on a more 

“oval-like” appearance.   
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Figure 3.3.  Percentage of fluxes discarded for each channel 
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Additionally, for unknown reasons, a small fraction of the differential fluxes were 

negative.  Dr. Rich [pers. comm., 2004] informed us that differential fluxes of -1 can 

occur when the SSJ/4 instrument is turned off.  However, many of the negative fluxes 

had absolute values greater than one.  We do not yet know the source of such negative 

fluxes; however, since they have no physical meaning, they were also removed from our 

computations. 

Both of these sets of discarded data accounted for only 570,185 of the over 3.1 

billion fluxes evaluated.  The number of negative values discarded totaled 543,645, while 

the high flux values discarded totaled only 26,540 or 0.000853% of the total. 

 Once all of the averaged channels were calculated, the integral equations were 

then applied to each bin for each of the 20 geomagnetic activity levels.  The quantities 

calculated were the integral number flux in units of el/cm2·s·sr defined as: 

Jtot j E1( ) E2 E1−( )
2

19

i

j Ei( )
Ei 1+ Ei 1−−( )

2
⋅







∑

=

+ j 20( ) E20 E19−( )+

 

the integral energy flux in units of keV/cm2·s·sr defined as:  

JEtot E1 j E1( )⋅ E2 E1−( )
2

19

i

Ei( ) J Ei( )⋅
Ei 1+ Ei 1−−( )

2







∑

=

+ E20 j E20( )⋅ E20 E19−( )+

 

and the average energy in units of keV defined as: 

E ave
JE tot
J tot  

In these equations, j(Ei) is the average differential number flux in the ith energy channel 

and Ei is the central energy of the ith energy channel [Hardy et al., 1985]. 

(3.1) 

(3.2) 

(3.3) 
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 After the integral quantities were computed, additional smoothing was 

applied to the integral quantities to help reduce residual noise in the data collected by the 

SSJ/4 sensors. Again, this was exact procedure performed by Hardy et al. (1985).  The 

following equation was applied to both the integral number flux and the integral energy 

flux in each bin.   

αij
3 αij⋅ αi 1− j,+ αi 1+ j,+ αi j 1+,+ αi j 1−,+

7  

The value ‘αij’ corresponds to an individual bin where ‘i’ is its MLT position and ‘j’ is its 

latitude position.  For the bins at the pole (88˚ to 90˚), the average was computed for all 

48 MLT bins.  Also, for the bins from 50˚ to 52˚, the αi, j-1 term was omitted and the sum 

was divided by 6 rather than 7. This smoothing equation was applied to the integral 

quantities three times [Hardy et al., 1985]. 

 The final step in this integral flux IDL program was to write the results to a file.  

It contained all pertinent information for each bin in each activity level including the 

ABI, MLT and latitude positions, integral flux values, average energy, and the number of 

fluxes that went into that bin’s average.  For maximum flexibility, the file was written in 

both ASCII and binary.  Not only were the files written containing the smoothed 

quantities, but also before the smoothing was applied.  This will allow comparison of 

both if needed. 

Hardy Auroral Model Output 

 The Hardy auroral model code was also obtained through Dr. Rich.  It was written 

in FORTRAN and with the input of the geomagnetic activity as a Kp index from 0 to 6, 

and the input of a MLT, it would write to the screen the integral quantities from 55° to 

(3.4) 
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85° in increments of 5°.  Slight modification to the code had to be made to allow its 

output to be for all MLTs so a complete auroral oval could be generated.  Also, only the 

portions of the code that produced the integral number flux, integral energy flux, and the 

average energy were used.  All other parts were deleted.  Finally, code was added to 

allow for output files to be written containing the integral quantities, MLT, and MLAT 

for each Kp. 

Tecplot 

 Once the data files containing the integral quantities were generated, they needed 

to be converted into visual representations of the auroral oval.  Tecplot was chosen as the 

plotting software to do this since it was capable of creating high-quality plots from simple 

XY plots to sophisticated 3-D plots from data sets of up to millions of data points.  The 

actual auroral ovals generated by Tecplot for this thesis are 3-D contours (2-D when view 

from the top) and can be rotated to view at virtually any angle.  For the purpose of this 

study, though, only the top-view is shown to make direct comparisons of different ovals 

easier. 

 To be able to generate these ovals in Tecplot, two IDL programs had to be written 

to convert the integral flux output files into Tecplot input files.  One was written for the 

new ABI auroral oval model data files and one was written for the Hardy auroral model 

data files.  Both programs were different in the files that were opened and written, but the 

data contained within the written files were the same.   

 One of the main steps when creating these Tecplot input files was to convert each 

bin from an MLT and MLAT coordinate system to an XY coordinate system in units of 

kilometers with the geomagnetic pole at the origin.  This resulted in an XY plot that was 
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4444.444 km by 4444.444 km since each degree of latitude is 111.111 km and the radial 

distance was the latitude which ranged from 50° to 90°.  Equations (3.5) and (3.6) 

accomplished these conversions for the new ABI auroral oval model.  For the Hardy 

auroral model, the equations were the same except the MLT had to be divided by 100 (to 

arrive at MLT in hours and tenths of hours).  

X 90 latitude−( ) 111.111⋅[ ] COS MLT 15⋅( ) 90−[ ]
π

180
⋅





⋅
 

Y 90 latitude−( ) 111.111⋅[ ] SIN MLT 15⋅( ) 90−[ ]
π

180
⋅





⋅
 

The equations also oriented the noon MLT pointing up and the midnight MLT pointing 

down.  As an example, a bin located at 0.50 MLT (30 minutes past midnight) and 51° 

geomagnetic latitude converts to an XY position of X = 565.6 km and Y = -4296.3 km. 

 Each Tecplot input file required a header with a title, variable names, and how the 

data was ordered.  The values included with each file were the XY coordinates, integral 

number/energy flux, average energy, and the log of both the integral number and energy 

flux. 

(3.5) 

(3.6) 
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4. Results and Analysis
 
 

Introduction 

 With the auroral ovals generated for both models, it was possible to begin 

evaluating the results of reparameterizing the auroral model with the Auroral Boundary 

Index.  This chapter focuses on analyses of the ABI auroral model ovals along with a 

comparison with the Hardy auroral model using actual DMSP satellite measurements.   

 A polar projection plot is the most practical way of displaying an auroral oval and 

allows for quick visual identification of patterns.  They offer a complete image of the 

auroral oval at high latitudes.  For this reason, these plots are used extensively throughout 

this chapter.  They were generated by creating 2-D contour plots in a quasi polar 

coordinate system (see the section about Tecplot in Chapter 3) of the integral quantities 

centered on the geomagnetic pole. Note that the results represent both north and south 

poles as all data from both poles were used and averaged together.  The edge of the plots 

represents 50° corrected geomagnetic latitude with rings spaced 10° apart.  Local noon 

points upward and local midnight points downward, with dawn to the right and dusk to 

the left.  The Earth rotates counterclockwise underneath this high latitude pattern.   

ABI Auroral Model Ovals 

In Appendix A, the polar projection plots of the integral number flux and the 

integral energy flux are presented for each of the twenty levels of the ABI.  The fluxes 

are plotted ranging from 107.5 to 109.5 in units of el/cm2·s·sr for the integral number flux 

and units of keV/cm2·s·sr for the integral energy flux. This range was chosen because it 

offered a very distinctive oval and helped to reduce the amount of noise and background 
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flux not associated with the auroral oval.  It was also consistent with the magnitude of the 

fluxes obtained by Hardy et al. (1985).  This range was used for all of the plots generated 

for continuity.   

Initially, these plots were analyzed for their statistical completeness.  

Unfortunately, several ovals were not complete mainly due to the infrequent nature of 

extremely high—or extremely low—geomagnetic activity.  The bottom line is there is 

just not enough data for these extremes to render a statistically valid oval.  Figure 4.1 

shows the total number of fluxes that formed each ABI zone’s averages.  For low  
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Figure 4.1.  Total number of fluxes that were averaged in each ABI zone 

 
 
 
activity, the ovals for ABI zones 67-67.9 and 68-68.9 contain too little data to be very 

useful.  Note that these plots represent a geomagnetic activity with a “statistical” Kp* 

index  (see the Auroral Boundary Index section of the methodology chapter) of 0 to 0+.  

On the high geomagnetic activity end of the spectrum, the ABI zones from 49-49.9 
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through 54-54.9 (Kp* greater than 8-) also contained too little data.  The two ABI zones, 

55-55.9 and 56-56.9, were transition zones from incomplete ovals to complete ovals. 

Figure 4.1 shows which zones were the most statistically “complete.”  These were 

ABI zones 57-57.9 through 66-66.9 with the number of fluxes averaged ranging from 2 to 

32 million per ABI zone.  The following discussion focuses mainly on these ovals.   

 In the polar projection plots in Appendix A, note the two triangular areas that 

occur between magnetic midnight and 0430 MLT (50°-70° MLAT) and from just past 

magnetic noon to 1600 MLT (50°-63° MLAT).  These are due to the areas that the F8 

and F9 satellite orbits cannot cover.  See Figure 2.9 for the combined orbital coverage of 

both satellites.  No data were added, or interpolation done, to try to fill in these gaps.  The 

data are presented as acquired directly from the satellites and mapped to the nearest half 

hour in MLT and the nearest geomagnetic latitude as discussed in the section titled 

Integral Flux Output in chapter 3.  

Hardy Auroral Model Ovals 

 A complete set of integral number flux and integral energy flux ovals for the 

seven levels of Kp produced from the Hardy et al. (1985) study are presented in 

Appendix B.  The plots are set up exactly the same as those in Appendix A so that 

regions of interest can be compared one to one with the same color spectrum and spatial 

positions.  The fluxes are plotted ranging from 107.5 to 109.5 in units of el/cm2·s·sr for the 

integral number flux and units of keV/cm2·s·sr for the integral energy flux.  

Smoothing and Removal of Non-Physical Integral Fluxes 

This section covers the results of the ABI auroral oval plots for two different 

methods of smoothing.  The first method was discussed in the Integral Flux Output 
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section in Chapter 3.  It was a process to rid the initial auroral oval plots of random spikes 

that plagued the data.  Most of the time, the spikes were not apparent in the integral 

number flux plots, but when the integral energy flux equation was applied to the averaged 

differential fluxes, the errors in the data were very obvious.  By eliminating only the most 

extreme high values and all negative values in the differential flux data, the spikes 

vanished and the auroral oval became visible.  Figures 4.2 and 4.3 represent one ABI 

auroral oval before and after this first method of smoothing was applied.   

 
 

 
Figure 4.2.  ABI auroral model, zone 58-58.9, before discarding unphysical fluxes for (a) 

number flux and (b) energy flux 
 
 
 

(a) (b) 
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Figure 4.3.  ABI auroral model, zone 58-58.9, after discarding unphysical fluxes for (a) 

number flux and (b) energy flux 
 
 
 

The Integral Flux Output section in Chapter 3 also introduced the second method 

of smoothing.  This was a procedure to smooth the integral quantities as applied in the 

original study by Hardy et al. (1985).  To remain true to this original study, each bin of 

integral number and energy flux was smoothed according to equation 3.4.  Figures 4.4 

and 4.5 represent one ABI auroral oval before and after this second method of smoothing 

was applied and also after the first method of smoothing was applied.  Appendix A 

contains the ABI auroral ovals for all activity levels with both methods of smoothing 

applied.  For the remainder of this chapter, only those ovals with both methods of 

smoothing will be displayed, except for Figures 4.15 through 4.26 which show the line 

plots for both the smoothed and unsmoothed grids. 

 
 

(a) (b) 
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Figure 4.4.  ABI auroral model, zone 58-58.9, prior to bin smoothing for (a) number flux 

and (b) energy flux 
 
 
 

 
Figure 4.5.  ABI auroral model, zone 58-58.9, after bin smoothing for (a) number flux 

and (b) energy flux 
 
 
 
Discussion of Features on ABI Auroral Model Plots 

The next three sections discuss the general features found on the ABI auroral 

model plots located in Appendix A.  Where applicable, the Hardy auroral model plots are 

(a) (b) 

(a) (b) 
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shown at comparable activity levels.  To determine the appropriate Hardy oval to 

compare against the ABI model output, Table 2.4 was used to choose the statistical Kp* 

value corresponding to the ABI range (zone) of interest. 

Integral Number Flux Plots. 

 Figures 4.6 and 4.7 compare the ABI and Hardy model integral number flux for 

two different ABI ranges (zones).  Figure 4.6(a) is for an ABI range of 65 to 65.9 

degrees; this equates to a Kp* of 1, and so the Hardy model for the Kp = 1 case is shown 

in Figure 4.6(b).  Likewise, Figure 4.7(a) is for the ABI range of 58 to 58.9 degrees, 

which equates to a  Kp* of about 6.  The statistically “complete” ABI ovals fall between 

these two extremes of ABI values.  Both figures show excellent overall agreement 

between the two models with respect to the shape and magnitudes of auroral features.  

Also, both models seem to respond in very similar fashion as the level of magnetic 

activity rises.  However, as discussed previously, one can also see the post-midnight 

absence of F-8 and F-9 data in the ABI auroral ovals, especially visible in Figure 4.7(a).  

To achieve a complete comparison between the two models, one would have to devise a 

reasonable method to “fill in” this data-starved region. 
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Figure 4.6.  Number flux for (a) ABI auroral model, zone 65-65.9 and (b) Hardy auroral 

model, Kp = 1 
 
 
 

 
Figure 4.7.  Number flux for (a) ABI auroral model, zone 58-58.9 and (b) Hardy auroral 

model, Kp = 6 
 
 
 
Integral Energy Flux Plots. 

Figures 4.8 and 4.9 compare the ABI model versus Hardy integral energy flux 

pattern for the same ABI (and Kp*) ranges as shown in Figures 4.6 and 4.7, respectively.  

The overall agreement between the Hardy and ABI results is still very good, but not as 

(a) (b) 

(a) (b) 
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close as in the integral number fluxes.  Higher energy fluxes occur on the night side of 

the both ovals between 60° and 70° latitude.  Similar to the results obtained by Hardy et 

al. (1985), the high energy flux region forms a horseshoe shape with the base centered at 

approximately 0200 MLT.  Unlike the results by Hardy et al., though, the peak in ABI 

energy flux appears to occur premidnight, however, this may be due only to the cutout in 

data postmidnight and cannot be resolved at this time.  As the magnetic activity level 

increases, the energy flux into the night side oval also increases and the entire oval 

expands equatorward towards lower latitudes.  This is apparent in Figures 4.9(a) and 

4.9(b) with a comparison of the ABI auroral model to the Hardy auroral model at high 

activity.  Note how the ABI auroral oval expands slightly more equatorward on the night 

side than the Hardy oval.  On the dayside in both figures, however, the ABI model has a 

much more extended region of low-energy background fluxes.  It is possible that such 

low flux values were also present in the original Hardy model, but were simply excluded 

when the model was computerized.   

 
Figure 4.8.  Energy flux for (a) ABI auroral model, zone 65-65.9 and (b) Hardy auroral 

model, Kp = 1 
 

(a) (b) 
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Figure 4.9.  Energy flux for (a) ABI auroral model, zone 58-58.9 and (b) Hardy auroral 

model, Kp = 6 
 
 
 
Average Energy Plots. 

 There are a few characteristics to point out on the average energy plots.   Only a 

few of the plots are included in this section.  They are divided into cool electrons (Eave ≤ 

600 eV) and hot electrons (Eave ≥ 600 eV) [Hardy et al., 1985].  Each ABI zone is 

compared to its equivalent Kp* from Table 2.4. 

 The plots of the cool electrons (Figures 4.10(a) and 4.10(b)) show a minimum as a 

crescent shaped region poleward of the auroral oval, centered around noon, and 

positioned between 75° and 85°.  The ABI auroral model and the Hardy auroral model 

compare very well both in location and magnitude of this minimum. 

 
 

(a) (b) 
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Figure 4.10.  Average energy, cool electrons for (a) ABI auroral model, zone 63-63.9 and 

(b) Hardy auroral model, Kp = 3 
 
 
 

In the plots of the hot electrons (Figures 4.11(a) and 4.11(b)) there exists a 

maximum close to prenoon and positioned between 60° and 70° latitude.  Another 

maximum also lies premidnight and is located between 60° and 70° latitude.  The band of 

maximum average energy corresponds well with the position of the actual auroral oval 

for both the ABI auroral model and the Hardy auroral model. 

 
Figure 4.11.  Average energy, hot electrons for (a) ABI auroral model, zone 59-59.9 and 

(b) Hardy auroral model, Kp = 5 

(a) (b) 

(a) (b) 
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DMSP Passes 

 Having established the general agreement between the ABI and Hardy models 

through visual comparisons, we now quantitatively assess the differences between the 

two models via comparisons with actual DMSP data from individual satellite passes.   

 The raw differential flux data from selected DMSP F8 and F9 passes were used to 

compute the integral fluxes in the same manner as for the derived ABI auroral model.  

Initially, the integral fluxes from the individual passes were not smoothed.  Therefore, 

many spikes and valleys exist in the raw DMSP data which must be taken into account 

when comparing them to the statistical data of the two models.  Next, Tecplot was used to 

smooth the DMSP passes to try and reduce noise and lessen discontinuities in the DMSP 

data.  The DMSP fluxes were smoothed three times with each pass shifting the flux at 

each data point towards an average of the flux at its neighboring data points. 

 Line plots of integral flux value versus magnetic latitude were generated for each 

separate DMSP polar pass.  Each line of data is separated by color for each model or 

DMSP pass; red corresponds to the actual data obtained from the DMSP pass, green 

corresponds to the Hardy auroral model based on the actual Kp index (not the statistical 

Kp*), and blue corresponds to the ABI oval extracted from the actual ABI value for the 

DMSP pass.  In all of the line plots, evening/night is on the left side and morning/day is 

on the right. 

 The satellite passes were chosen where the ABI values were in the 57-67 degree 

range to ensure comparison with a statistically complete ABI oval.  Passes were selected 

from the DMSP data by searching for days that had fairly consistent Kp and ABI values.  

Then an individual pass was used from that day.  A total of three passes were chosen with 
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varying Kp and ABI values.  They are listed by date from lowest to highest activity level 

and are: April 12, 1992 (F8), July 12, 1988 (F9), and April 6, 1994(F8).  Figures 4.12, 

4.13, and 4.14 illustrate the exact locations of the DMSP paths and their correspondence 

with the integral number flux and integral energy flux of both the ABI auroral ovals and 

the Hardy auroral ovals. 

 
 

 

 
Figure 4.12.  April 12, 1992 DMSP F8 pass overlaid on (a) Hardy auroral model, Kp = 

1, number flux (b) Hardy auroral model, Kp = 1, energy flux (c) ABI auroral model, zone 
65-65.9, number flux (d) ABI auroral model, zone 65-65.9, energy flux 

 
 

(a) (b) 

(c) (d) 



 

 4-14

 

 
Figure 4.13.  July 12, 1988 DMSP F9 pass overlaid on (a) Hardy auroral model, Kp = 3, 

number flux (b) Hardy auroral model, Kp = 3, energy flux (c) ABI auroral model, zone 
62-62.9, number flux (d) ABI auroral model, zone 62-62.9, energy flux 

 
 
 
 The DMSP data and ABI values used in these comparisons were acquired from 

Dr. Rich at AFRL and the Kp values were obtained from the World Data Center for 

Magnetism website. 

 

(a) (b) 

(c) (d) 
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Figure 4.14.  April 6, 1994 DMSP F8 pass overlaid on (a) Hardy auroral model, Kp = 5, 
number flux (b) Hardy auroral model, Kp = 5, energy flux (c) ABI auroral model, zone 

60-60.9, number flux (d) ABI auroral model, zone 60-60.9, energy flux 
 
 
 
April 12, 1992 DMSP Pass. 

The time of this F8 pass occurred between 1055 UT and 1120 UT in the meridian 

from 1915 MLT to 0545 MLT.  The Kp averaged to 1 for the entire day with the 

individual values shown in Table 4.1.  The Kp was reported as 1 during the time of the 

actual pass, so the Kp = 1 plot is the one used in this comparison.  The actual ABI was 

between 65 degrees and 64.5 (this second value computed for a time seven minutes 

(a) (b) 

(c) (d) 
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before the end of the pass).  Therefore, the ABI zone of 65 – 65.9 was used in this 

comparison since the majority of the pass was at 65 and also this ABI matches better with 

the statistical Kp* of 1 as shown in Table 2.4.  

 
 

Table 4.1.  Kp values for April 12, 1992 
UT Kp 

0000 – 0300 0+ 
0300 – 0600 2- 
0600 – 0900 1 
0900 – 1200 1 

UT Kp 
1200 – 1500 1+ 
1500 – 1800 1+ 
1800 – 2100 1- 
2100 - 2400 1- 

 
 
 

Figures 4.15 and 4.16 show the raw DMSP F8 data for April 12, 1992 compared 

with the Hardy auroral model and the smoothed and unsmoothed ABI auroral model.  In 

both of the figures, the equatorward boundaries of the ABI auroral model were 

consistently higher in latitude than the Hardy auroral model, but correlated better to the 

DMSP boundaries.  Also, the ABI auroral model levels off to background flux 

magnitudes at similar latitudes as DMSP, but always at a higher flux value.  DMSP 

measured larger gradients than the two models at the equatorward edges of both the 

integral number flux and integral energy flux.  For the peak oval energy fluxes, the Hardy 

auroral model was a closer match to actual DMSP peak flux levels. 
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Figure 4.15.  April 12, 1992 actual DMSP F8 data compared to ABI auroral model and 

Hardy auroral model, magnetic latitude vs. number flux 
 
 
 

 
Figure 4.16.  April 12, 1992 actual DMSP F8 data compared to ABI auroral model and 

Hardy auroral model, magnetic latitude vs. energy flux 
 
 
 

 As noted before, the April 12, 1992 DMSP F8 fluxes were next smoothed slightly 

to achieve a better concistency with the smoothed statistical models.  Figure 4.17 of the 

integral number flux shows both models actually match up much better with DMSP, 

especially the peak fluxes.  The energy flux in Figure 4.18 indicates a much better match 

of the ABI auroral model to DMSP.  Naturally this smoothing process also has the 
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negative effect of “blurring” the actual DMSP pass equatorward boundaries (which is 

exactly the shortcoming of the Hardy model!).   

 
 

 
Figure 4.17.  April 12, 1992 smoothed DMSP F8 data compared to ABI auroral model 

and Hardy auroral model, magnetic latitude vs. number flux 
 
 
 

 
Figure 4.18.  April 12, 1992 smoothed DMSP F8 data compared to ABI auroral model 

and Hardy auroral model, magnetic latitude vs. energy flux 
 
 
 
July 12, 1988 DMSP Pass. 

The time of this F9 pass occurred between 0306 UT and 0329 UT in the meridian 

from 2145 MLT to 1045 MLT.  The Kp averaged to 3 for the entire day with the 
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individual values shown in Table 4.2.  The Kp was reported as 3 during the time of the 

actual pass, so the Kp = 3 plot is the one used in this comparison.  The actual ABI was 

between 63.5 degrees and 62.5 degrees (this second value computed for a time eighteen 

minutes before the end of the pass).  Therefore, the ABI zone of 62 – 62.9 was used in 

this comparison since the majority of the pass was at 62.5 and also this ABI matches well 

with a statistical Kp* of 3 as shown in Table 2.4.  

 
 

Table 4.2.  Kp values for July 12, 1988 
UT Kp 

0000 – 0300 3- 
0300 – 0600 3 
0600 – 0900 3+ 
0900 – 1200 3 

UT Kp 
1200 – 1500 3+ 
1500 – 1800 2+ 
1800 – 2100 3+ 
2100 - 2400 3 

 
 
 

Figures 4.19 and 4.20 show the raw DMSP F9 data for July 12, 1988 compared 

with the Hardy auroral model and the smoothed and unsmoothed ABI auroral model.  In 

both of the figures, the gradients of both models at the equatorward edge of the oval on 

the night side were similar to DMSP but consistently occurred at lower latitudes than 

DMSP.  Both models were a close match to the peak flux of the DMSP data.  In Figure 

4.19, the equatorward boundaries of the ABI auroral model almost match exactly with the 

Hardy auroral model. On the poleward boundaries, both models are a good match to the 

average DMSP flux.  Both models were too low in peak flux on the integral number flux 

chart.  For the integral energy flux in Figure 4.20, there was a larger variation in flux 

between DMSP and the two models, especially on the day side equatorward boundary 

(right side of the plot).  



 

 4-20

 
Figure 4.19.  July 12, 1988 actual DMSP F9 data compared to ABI auroral model and 

Hardy auroral model, magnetic latitude vs. number flux 
 
 
 

 
Figure 4.20.  July 12, 1988 actual DMSP F9 data compared to ABI auroral model and 

Hardy auroral model, magnetic latitude vs. energy flux 
 
 
 

Figures 4.21 and 4.22 are the smoothed DMSP F9 data for July 12, 1988 

compared with both models.  Again, the models match up better with DMSP in number 

flux than energy flux.  The poleward boundaries on the number flux plot, Figure 4.21, 

indicate very good correlation of the models with DMSP.  The DMSP integral flux data 

in Figure 4.22, smoothed out to values well below both models. 
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Figure 4.21.  July 12, 1988 smoothed DMSP F9 data compared to ABI auroral model 

and Hardy auroral model, magnetic latitude vs. number flux 
 
 
 

 
Figure 4.22.  July 12, 1988 smoothed DMSP F9 data compared to ABI auroral model 

and Hardy auroral model, magnetic latitude vs. energy flux 
 
 
 
April 6, 1994 DMSP Pass. 

The time of this F8 pass occurred between 0625 UT and 0646 UT in the dawn to 

dusk meridian.  The Kp averaged to 5 for the entire day with the individual values shown 

in Table 4.3.  The Kp was reported 5+ during the time of the actual pass, so the Kp = 5 

plot is the one used in this comparison.  The ABI was 60.7 for the entire time interval of 
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the pass.  Therefore, the ABI zone 60 – 60.9 was used in this comparison which also 

matches well with a statistical Kp* of 5 as shown in Table 2.4.  

 
 

Table 4.3.  Kp values for April 6, 1994 
UT Kp 

0000 – 0300 5- 
0300 – 0600 4+ 
0600 – 0900 5+ 
0900 – 1200 5+ 

UT Kp 
1200 – 1500 5 
1500 – 1800 5+ 
1800 – 2100 5 
2100 - 2400 5 

 
 
 

Figures 4.23 and 4.24 show the raw DMSP F8 data for April 6, 1994 compared 

with the Hardy auroral model and the smoothed and unsmoothed ABI auroral model.  In 

the two figures, both models tend to follow the DMSP curve very closely on the poleward 

boundaries.  Both models were also a very good match to the data on the day side 

equatorward boundaries (right side of the plot), but the ABI auroral model did slightly 

better on the night side equatorward boundaries (left side of the plot).  For the energy 

flux, Figure 4.24, both models were very similar to DMSP on both the day side 

equatorward and poleward boundaries. 

 

 
Figure 4.23.  April 6, 1994 actual DMSP F8 data compared to ABI auroral model and 

Hardy auroral model, magnetic latitude vs. number flux 



 

 4-23

 
Figure 4.24.  April 6, 1994 actual DMSP F8 data compared to ABI auroral model and 

Hardy auroral model, magnetic latitude vs. energy flux 
 
 
 

Figures 4.25 and 4.26 are the smoothed DMSP F8 data for April 6, 1994.  Again, 

both models correspond very well to the poleward boundaries on both plots.  The 

equatorward boundary on the day side in energy flux is the only one that was very 

similar.  The other model equatorward boundaries are still too low in latitude relative to 

the DMSP pass; however, as in the other April F8 comparison, the ABI model is a better 

match to the latitude of the actual equatorward boundary than is the Hardy model.    

 
 

 
Figure 4.25.  April 6, 1994 smoothed DMSP F8 data compared to ABI auroral model and 

Hardy auroral model, magnetic latitude vs. number flux 
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Figure 4.26.  April 6, 1994 smoothed DMSP F8 data compared to ABI auroral model and 

Hardy auroral model, magnetic latitude vs. energy flux 
 
 
 

Overall, both models are surprisingly similar in all the comparison cases, 

especially noting that completely different data sets and parameters were used in their 

creation.   
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5. Conclusions and Further Study
 
 

 The position and intensity of the auroral oval has many implications for the Air 

Force from determining the effects of incoming electron flux on DoD systems to 

modeling the ionosphere to exploit current HF communications capabilities.   

 This study used the ABI index to parameterize the statistics of the auroral oval 

location.  This is in contrast to the Hardy et al. (1985) work which used Kp as the 

“binning” parameter.  Thus, the current work represents a move toward a more self-

consistent—and presumably more accurate—climatological representation of the auroral 

oval boundaries.  Refinements of our initial results will be necessary; however, 

preliminary findings suggest that the new ABI auroral oval model is, at worst, 

comparable to the results achieved by Hardy et al.  Further refinement of this new model 

based on the ABI should increase its effectiveness and offer a more reliable alternative as 

an auroral oval model.   

 DMSP spacecraft have been flown since the mid 1970s and all of the different 

satellites have carried precipitating particle spectrometer sensors from the SSJ/2 to the 

SSJ/5.  All future DMSP spacecraft or their replacements will most likely continue to 

carry similar sensors.  Since the ABI is derived directly from observed fluxes measured 

by DMSP, availability of the index should not be a problem. 

 Creating a model to predict the location and magnitude of the auroral oval is a 

very challenging topic.  Even though we used a different “binning” parameter than the 

Hardy et al. (1985) study, our study still utilized the Hardy methodology (where possible) 

in an effort to achieve some measure of consistency between the two models.  



 

 5-2

Additionally, a special emphasis was placed on using a larger database to make the 

results as statistically significant as possible.  Consequently, a large portion of this 

research effort was devoted to generating and troubleshooting the code to ingest the 

gigabytes of data to produce graphical representations of the auroral ovals based on 

geomagnetic activity levels.   

 The analysis of the results involved polar projection plots to give visual 

interpretations of the ovals and line plots to directly compare the results to the Hardy 

auroral model and actual DMSP observations.  Surprisingly, the ovals based on the ABI 

were very similar to those obtained by Hardy based on Kp.   

Recommendations for Further Research 

 Several refinements are possible and/or warranted before the new ABI auroral 

model would enter service as a driver of space weather computer models.  First and 

foremost, the poor statistics of the incomplete ABI ranges (49 through 56.9 and 67 

through 68.9) must be “filled in.”  Several possibilities are immediately apparent.  First, it 

is likely that some of the one-degree ABI ranges may represent comparable geophysical 

conditions, and therefore lend themselves to being combined into a single (larger) ABI 

zone.  Such a procedure could also help bolster the statistics on the high end of the ABI 

scale (i.e., very quiet activity levels).  However, it would not be wise to apply this at the 

low end of the scale (very disturbed conditions), since relatively small changes in ABI 

may reflect very different geophysical conditions.  Second, we could employ an 

“aliasing” scheme to combine data from different bins whose magnetic latitude difference 

and ABI difference are equal [Rich, pers. comm., 2003].  For example, for a given MLT, 

one could combine the differential fluxes from a bin at 60 degrees MLAT (55 – 55.9 ABI 
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range) together with those data from the bin at 62 degrees MLAT (57 – 57.9 ABI range).  

Naturally, one would have to set judicious limits on the number of bins to combine.  

Finally, the “gaps” in the F-8 and F-9 DMSP coverage between 00-04 MLT and 50°-70° 

MLAT, and 12-16 MLT and 50°-63° MLAT, must also be remedied.  The Hardy auroral 

model must have compensated for this same problem, but the present research did not 

address this issue.     

 For the ABI ovals that are already statistically complete, the results of this study 

and those produced by Hardy et al. (1985) are qualitatively very similar.  Further, the 

DMSP pass comparisons provide a first method of quantitative comparison; however, 

more can be done in this area.  One method would be to form difference fields between 

an ABI auroral oval and a Hardy auroral oval of comparable activity levels.  This 

subtraction of the fluxes would reveal the exact locations and magnitudes of the 

differences between the two models. 

 Another approach to test our ABI auroral results would be a comparison against 

the self-consistent auroral model of Sotirelis & Newell (2000).  Their model used the 

degree of magnetotail stretching as the “binning” parameter, and averaged together only 

those fluxes similarly located relative to auroral boundaries.  Even though my research 

effort averaged all regions of electron precipitation strictly by MLAT and MLT, the 

comparison should nonetheless be informative. 

 In order to more fully test the accuracy of this model, though, more comparisons 

should be performed against actual DMSP auroral measurements.  Due to limited time 

constraints in completing this study, only three DMSP passes could be extracted and 

compared.  Increasing the number of these comparisons should prove this model’s ability 
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to consistently provide an auroral oval pattern that is a close approximation to the actual 

oval boundaries. 

Once the complete ABI auroral oval model is achieved, the final step toward 

operational use is to convert the model into a computational format that can be accessed 

by space physics computer codes.  
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Appendix A:   ABI Auroral Model Polar Projection Plots 
 
 

 
Figure A.1.  ABI auroral model zone 49-49.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.2.  ABI auroral model zone 50-50.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.3.  ABI auroral model zone 51-51.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.4.  ABI auroral model zone 52-52.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.5.  ABI auroral model zone 53-53.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.6.  ABI auroral model zone 54-54.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.7.  ABI auroral model zone 55-55.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.8.  ABI auroral model zone 56-56.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.9.  ABI auroral model zone 57-57.9 for (a) number flux and (b) energy flux 

 

(a) 

(b) 



 

 A-10

 
Figure A.10.  ABI auroral model zone 58-58.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.11.  ABI auroral model zone 59-59.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.12.  ABI auroral model zone 60-60.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.13.  ABI auroral model zone 61-61.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.14.  ABI auroral model zone 62-62.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.15.  ABI auroral model zone 63-63.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.16.  ABI auroral model zone 64-64.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.17.  ABI auroral model zone 65-65.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.18.  ABI auroral model zone 66-66.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.19.  ABI auroral model zone 67-67.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure A.20.  ABI auroral model zone 68-68.9 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Appendix B:   Hardy Auroral Model Polar Projection Plots 
 
 

 

 
Figure B.1.  Hardy auroral model Kp zone 0 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure B.2.  Hardy auroral model Kp zone 1 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure B.3.  Hardy auroral model Kp zone 2 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure B.4.  Hardy auroral model Kp zone 3 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure B.5.  Hardy auroral model Kp zone 4 for (a) number flux and (b) energy flux 

(a) 

(b) 
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Figure B.6.  Hardy auroral model Kp zone 5 for (a) number flux and (b) energy flux 

 

(a) 

(b) 
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Figure B.7.  Hardy auroral model Kp zone 6 for (a) number flux and (b) energy flux 

(a) 

(b) 
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